Create an Google AI Studio inference endpoint
Added in 8.15.0
Create an inference endpoint to perform an inference task with the googleaistudio
service.
When you create an inference endpoint, the associated machine learning model is automatically deployed if it is not already running.
After creating the endpoint, wait for the model deployment to complete before using it.
To verify the deployment status, use the get trained model statistics API.
Look for "state": "fully_allocated"
in the response and ensure that the "allocation_count"
matches the "target_allocation_count"
.
Avoid creating multiple endpoints for the same model unless required, as each endpoint consumes significant resources.
Path parameters
-
task_type
string Required The type of the inference task that the model will perform.
Values are
completion
ortext_embedding
. -
googleaistudio_inference_id
string Required The unique identifier of the inference endpoint.
Body
-
chunking_settings
object -
service
string Required Value is
googleaistudio
. -
service_settings
object Required
curl \
--request PUT 'http://api.example.com/_inference/{task_type}/{googleaistudio_inference_id}' \
--header "Authorization: $API_KEY" \
--header "Content-Type: application/json" \
--data '"{\n \"service\": \"googleaistudio\",\n \"service_settings\": {\n \"api_key\": \"api-key\",\n \"model_id\": \"model-id\"\n }\n}"'
{
"service": "googleaistudio",
"service_settings": {
"api_key": "api-key",
"model_id": "model-id"
}
}