Get data frame analytics job configuration info Added in 7.3.0
You can get information for multiple data frame analytics jobs in a single API request by using a comma-separated list of data frame analytics jobs or a wildcard expression.
Path parameters
-
Identifier for the data frame analytics job. If you do not specify this option, the API returns information for the first hundred data frame analytics jobs.
Query parameters
-
allow_no_match boolean
Specifies what to do when the request:
- Contains wildcard expressions and there are no data frame analytics jobs that match.
- Contains the
_all
string or no identifiers and there are no matches. - Contains wildcard expressions and there are only partial matches.
The default value returns an empty data_frame_analytics array when there are no matches and the subset of results when there are partial matches. If this parameter is
false
, the request returns a 404 status code when there are no matches or only partial matches. -
from number
Skips the specified number of data frame analytics jobs.
-
size number
Specifies the maximum number of data frame analytics jobs to obtain.
-
exclude_generated boolean
Indicates if certain fields should be removed from the configuration on retrieval. This allows the configuration to be in an acceptable format to be retrieved and then added to another cluster.
curl \
-X GET http://api.example.com/_ml/data_frame/analytics/{id}
{
"count": 42.0,
"data_frame_analytics": [
{
"allow_lazy_start": true,
"analysis": {
"": {
"alpha": 42.0,
"dependent_variable": "string",
"downsample_factor": 42.0,
"early_stopping_enabled": true,
"eta": 42.0,
"eta_growth_rate_per_tree": 42.0,
"feature_bag_fraction": 42.0,
"feature_processors": [
{}
],
"gamma": 42.0,
"lambda": 42.0,
"max_optimization_rounds_per_hyperparameter": 42.0,
"max_trees": 42.0,
"num_top_feature_importance_values": 42.0,
"prediction_field_name": "string",
"randomize_seed": 42.0,
"soft_tree_depth_limit": 42.0,
"soft_tree_depth_tolerance": 42.0,
"loss_function": "string",
"loss_function_parameter": 42.0
},
"outlier_detection": {
"compute_feature_influence": true,
"feature_influence_threshold": 42.0,
"method": "string",
"n_neighbors": 42.0,
"outlier_fraction": 42.0,
"standardization_enabled": true
}
},
"analyzed_fields": {
"includes": [
"string"
],
"excludes": [
"string"
]
},
"authorization": {
"api_key": {
"id": "string",
"name": "string"
},
"roles": [
"string"
],
"service_account": "string"
},
"": 42.0,
"description": "string",
"dest": {
"index": "string",
"results_field": "string"
},
"id": "string",
"max_num_threads": 42.0,
"model_memory_limit": "string",
"source": {
"index": "string",
"runtime_mappings": {
"additionalProperty1": {
"fields": {},
"fetch_fields": [
{}
],
"format": "string",
"input_field": "string",
"target_field": "string",
"target_index": "string",
"script": {},
"type": "boolean"
},
"additionalProperty2": {
"fields": {},
"fetch_fields": [
{}
],
"format": "string",
"input_field": "string",
"target_field": "string",
"target_index": "string",
"script": {},
"type": "boolean"
}
},
"_source": {
"includes": [
"string"
],
"excludes": [
"string"
]
},
"query": {}
},
"version": "string"
}
]
}