- Java REST Client (deprecated): other versions:
- Overview
- Java Low Level REST Client
- Java High Level REST Client
- Getting started
- Document APIs
- Search APIs
- Miscellaneous APIs
- Indices APIs
- Analyze API
- Create Index API
- Delete Index API
- Indices Exists API
- Open Index API
- Close Index API
- Shrink Index API
- Split Index API
- Refresh API
- Flush API
- Flush Synced API
- Clear Cache API
- Force Merge API
- Rollover Index API
- Put Mapping API
- Get Mappings API
- Get Field Mappings API
- Index Aliases API
- Exists Alias API
- Get Alias API
- Update Indices Settings API
- Get Settings API
- Put Template API
- Validate Query API
- Get Templates API
- Get Index API
- Cluster APIs
- Ingest APIs
- Snapshot APIs
- Tasks APIs
- Script APIs
- Licensing APIs
- Machine Learning APIs
- Put Job API
- Get Job API
- Delete Job API
- Open Job API
- Close Job API
- Update Job API
- Flush Job API
- Put Datafeed API
- Get Datafeed API
- Delete Datafeed API
- Preview Datafeed API
- Start Datafeed API
- Stop Datafeed API
- Get Datafeed Stats API
- Get Job Stats API
- Forecast Job API
- Delete Forecast API
- Get Buckets API
- Get Overall Buckets API
- Get Records API
- Post Data API
- Get Influencers API
- Get Categories API
- Get Calendars API
- Put Calendar API
- Delete Calendar API
- Migration APIs
- Rollup APIs
- Security APIs
- Watcher APIs
- Graph APIs
- Using Java Builders
- Migration Guide
- License
Put Datafeed API
editPut Datafeed API
editThe Put Datafeed API can be used to create a new machine learning datafeed
in the cluster. The API accepts a PutDatafeedRequest
object
as a request and returns a PutDatafeedResponse
.
Put Datafeed Request
editA PutDatafeedRequest
requires the following argument:
Datafeed Configuration
editThe DatafeedConfig
object contains all the details about the machine learning datafeed
configuration.
A DatafeedConfig
requires the following arguments:
Optional Arguments
editThe following arguments are optional:
Synchronous Execution
editWhen executing a PutDatafeedRequest
in the following manner, the client waits
for the PutDatafeedResponse
to be returned before continuing with code execution:
PutDatafeedResponse response = client.machineLearning().putDatafeed(request, RequestOptions.DEFAULT);
Asynchronous Execution
editExecuting a PutDatafeedRequest
can also be done in an asynchronous fashion so that
the client can return directly. Users need to specify how the response or
potential failures will be handled by passing the request and a listener to the
asynchronous put-datafeed method:
The asynchronous method does not block and returns immediately. Once it is
completed the ActionListener
is called back using the onResponse
method
if the execution successfully completed or using the onFailure
method if
it failed.
A typical listener for put-datafeed
looks like:
Response
editThe returned PutDatafeedResponse
returns the full representation of
the new machine learning datafeed if it has been successfully created. This will
contain the creation time and other fields initialized using
default values:
On this page