WARNING: Version 1.3 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Term Vectors
editTerm Vectors
editAdded in 1.0.0.Beta1.
Returns information and statistics on terms in the fields of a particular document as stored in the index.
curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvector?pretty=true'
Optionally, you can specify the fields for which the information is retrieved either with a parameter in the url
curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvector?fields=text,...'
or adding by adding the requested fields in the request body (see example below).
Return values
editThree types of values can be requested: term information, term statistics and field statistics. By default, all term information and field statistics are returned for all fields but no term statistics.
Term information
edit- term frequency in the field (always returned)
-
term positions (
positions
: true) -
start and end offsets (
offsets
: true) -
term payloads (
payloads
: true), as base64 encoded bytes
If the requested information wasn’t stored in the index, it will be omitted without further warning. See type mapping for how to configure your index to store term vectors.
Start and end offsets assume UTF-16 encoding is being used. If you want to use these offsets in order to get the original text that produced this token, you should make sure that the string you are taking a sub-string of is also encoded using UTF-16.
Term statistics
editSetting term_statistics
to true
(default is false
) will
return
-
total term frequency (how often a term occurs in all documents)
- document frequency (the number of documents containing the current term)
By default these values are not returned since term statistics can have a serious performance impact.
Field statistics
editSetting field_statistics
to false
(default is true
) will
omit :
- document count (how many documents contain this field)
- sum of document frequencies (the sum of document frequencies for all terms in this field)
- sum of total term frequencies (the sum of total term frequencies of each term in this field)
Behaviour
editThe term and field statistics are not accurate. Deleted documents are not taken into account. The information is only retrieved for the shard the requested document resides in. The term and field statistics are therefore only useful as relative measures whereas the absolute numbers have no meaning in this context.
Example
editFirst, we create an index that stores term vectors, payloads etc. :
curl -s -XPUT 'http://localhost:9200/twitter/' -d '{ "mappings": { "tweet": { "properties": { "text": { "type": "string", "term_vector": "with_positions_offsets_payloads", "store" : true, "index_analyzer" : "fulltext_analyzer" }, "fullname": { "type": "string", "term_vector": "with_positions_offsets_payloads", "index_analyzer" : "fulltext_analyzer" } } } }, "settings" : { "index" : { "number_of_shards" : 1, "number_of_replicas" : 0 }, "analysis": { "analyzer": { "fulltext_analyzer": { "type": "custom", "tokenizer": "whitespace", "filter": [ "lowercase", "type_as_payload" ] } } } } }'
Second, we add some documents:
curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty=true' -d '{ "fullname" : "John Doe", "text" : "twitter test test test " }' curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty=true' -d '{ "fullname" : "Jane Doe", "text" : "Another twitter test ..." }'
The following request returns all information and statistics for field
text
in document 1
(John Doe):
curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvector?pretty=true' -d '{ "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true }'
Response:
{ "_id": "1", "_index": "twitter", "_type": "tweet", "_version": 1, "found": true, "term_vectors": { "text": { "field_statistics": { "doc_count": 2, "sum_doc_freq": 6, "sum_ttf": 8 }, "terms": { "test": { "doc_freq": 2, "term_freq": 3, "tokens": [ { "end_offset": 12, "payload": "d29yZA==", "position": 1, "start_offset": 8 }, { "end_offset": 17, "payload": "d29yZA==", "position": 2, "start_offset": 13 }, { "end_offset": 22, "payload": "d29yZA==", "position": 3, "start_offset": 18 } ], "ttf": 4 }, "twitter": { "doc_freq": 2, "term_freq": 1, "tokens": [ { "end_offset": 7, "payload": "d29yZA==", "position": 0, "start_offset": 0 } ], "ttf": 2 } } } } }