- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 5.5
- Breaking changes in 5.4
- Breaking changes in 5.3
- Breaking changes in 5.2
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- X-Pack APIs
- Info API
- Explore API
- Machine Learning APIs
- Close Jobs
- Create Datafeeds
- Create Jobs
- Delete Datafeeds
- Delete Jobs
- Delete Model Snapshots
- Flush Jobs
- Get Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Definitions
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.5.3 Release Notes
- 5.5.2 Release Notes
- 5.5.1 Release Notes
- 5.5.0 Release Notes
- 5.4.3 Release Notes
- 5.4.2 Release Notes
- 5.4.1 Release Notes
- 5.4.0 Release Notes
- 5.3.3 Release Notes
- 5.3.2 Release Notes
- 5.3.1 Release Notes
- 5.3.0 Release Notes
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
WARNING: Version 5.5 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Common Terms Query
editCommon Terms Query
editThe common
terms query is a modern alternative to stopwords which
improves the precision and recall of search results (by taking stopwords
into account), without sacrificing performance.
The problem
editEvery term in a query has a cost. A search for "The brown fox"
requires three term queries, one for each of "the"
, "brown"
and
"fox"
, all of which are executed against all documents in the index.
The query for "the"
is likely to match many documents and thus has a
much smaller impact on relevance than the other two terms.
Previously, the solution to this problem was to ignore terms with high
frequency. By treating "the"
as a stopword, we reduce the index size
and reduce the number of term queries that need to be executed.
The problem with this approach is that, while stopwords have a small
impact on relevance, they are still important. If we remove stopwords,
we lose precision, (eg we are unable to distinguish between "happy"
and "not happy"
) and we lose recall (eg text like "The The"
or
"To be or not to be"
would simply not exist in the index).
The solution
editThe common
terms query divides the query terms into two groups: more
important (ie low frequency terms) and less important (ie high
frequency terms which would previously have been stopwords).
First it searches for documents which match the more important terms. These are the terms which appear in fewer documents and have a greater impact on relevance.
Then, it executes a second query for the less important terms — terms
which appear frequently and have a low impact on relevance. But instead
of calculating the relevance score for all matching documents, it only
calculates the _score
for documents already matched by the first
query. In this way the high frequency terms can improve the relevance
calculation without paying the cost of poor performance.
If a query consists only of high frequency terms, then a single query is
executed as an AND
(conjunction) query, in other words all terms are
required. Even though each individual term will match many documents,
the combination of terms narrows down the resultset to only the most
relevant. The single query can also be executed as an OR
with a
specific
minimum_should_match
,
in this case a high enough value should probably be used.
Terms are allocated to the high or low frequency groups based on the
cutoff_frequency
, which can be specified as an absolute frequency
(>=1
) or as a relative frequency (0.0 .. 1.0
). (Remember that document
frequencies are computed on a per shard level as explained in the blog post
Relevance is broken.)
Perhaps the most interesting property of this query is that it adapts to
domain specific stopwords automatically. For example, on a video hosting
site, common terms like "clip"
or "video"
will automatically behave
as stopwords without the need to maintain a manual list.
Examples
editIn this example, words that have a document frequency greater than 0.1%
(eg "this"
and "is"
) will be treated as common terms.
GET /_search { "query": { "common": { "body": { "query": "this is bonsai cool", "cutoff_frequency": 0.001 } } } }
The number of terms which should match can be controlled with the
minimum_should_match
(high_freq
, low_freq
), low_freq_operator
(default "or"
) and
high_freq_operator
(default "or"
) parameters.
For low frequency terms, set the low_freq_operator
to "and"
to make
all terms required:
GET /_search { "query": { "common": { "body": { "query": "nelly the elephant as a cartoon", "cutoff_frequency": 0.001, "low_freq_operator": "and" } } } }
which is roughly equivalent to:
GET /_search { "query": { "bool": { "must": [ { "term": { "body": "nelly"}}, { "term": { "body": "elephant"}}, { "term": { "body": "cartoon"}} ], "should": [ { "term": { "body": "the"}}, { "term": { "body": "as"}}, { "term": { "body": "a"}} ] } } }
Alternatively use
minimum_should_match
to specify a minimum number or percentage of low frequency terms which
must be present, for instance:
GET /_search { "query": { "common": { "body": { "query": "nelly the elephant as a cartoon", "cutoff_frequency": 0.001, "minimum_should_match": 2 } } } }
which is roughly equivalent to:
GET /_search { "query": { "bool": { "must": { "bool": { "should": [ { "term": { "body": "nelly"}}, { "term": { "body": "elephant"}}, { "term": { "body": "cartoon"}} ], "minimum_should_match": 2 } }, "should": [ { "term": { "body": "the"}}, { "term": { "body": "as"}}, { "term": { "body": "a"}} ] } } }
minimum_should_match
A different
minimum_should_match
can be applied for low and high frequency terms with the additional
low_freq
and high_freq
parameters. Here is an example when providing
additional parameters (note the change in structure):
GET /_search { "query": { "common": { "body": { "query": "nelly the elephant not as a cartoon", "cutoff_frequency": 0.001, "minimum_should_match": { "low_freq" : 2, "high_freq" : 3 } } } } }
which is roughly equivalent to:
GET /_search { "query": { "bool": { "must": { "bool": { "should": [ { "term": { "body": "nelly"}}, { "term": { "body": "elephant"}}, { "term": { "body": "cartoon"}} ], "minimum_should_match": 2 } }, "should": { "bool": { "should": [ { "term": { "body": "the"}}, { "term": { "body": "not"}}, { "term": { "body": "as"}}, { "term": { "body": "a"}} ], "minimum_should_match": 3 } } } } }
In this case it means the high frequency terms have only an impact on
relevance when there are at least three of them. But the most
interesting use of the
minimum_should_match
for high frequency terms is when there are only high frequency terms:
GET /_search { "query": { "common": { "body": { "query": "how not to be", "cutoff_frequency": 0.001, "minimum_should_match": { "low_freq" : 2, "high_freq" : 3 } } } } }
which is roughly equivalent to:
GET /_search { "query": { "bool": { "should": [ { "term": { "body": "how"}}, { "term": { "body": "not"}}, { "term": { "body": "to"}}, { "term": { "body": "be"}} ], "minimum_should_match": "3<50%" } } }
The high frequency generated query is then slightly less restrictive
than with an AND
.
The common
terms query also supports boost
, analyzer
and
disable_coord
as parameters.
On this page