Dictionary decompounder token filter
editDictionary decompounder token filter
editIn most cases, we recommend using the faster
hyphenation_decompounder
token filter
in place of this filter. However, you can use the
dictionary_decompounder
filter to check the quality of a word list before
implementing it in the hyphenation_decompounder
filter.
Uses a specified list of words and a brute force approach to find subwords in compound words. If found, these subwords are included in the token output.
This filter uses Lucene’s DictionaryCompoundWordTokenFilter, which was built for Germanic languages.
Example
editThe following analyze API request uses the
dictionary_decompounder
filter to find subwords in Donaudampfschiff
. The
filter then checks these subwords against the specified list of words: Donau
,
dampf
, meer
, and schiff
.
resp = client.indices.analyze( tokenizer="standard", filter=[ { "type": "dictionary_decompounder", "word_list": [ "Donau", "dampf", "meer", "schiff" ] } ], text="Donaudampfschiff", ) print(resp)
response = client.indices.analyze( body: { tokenizer: 'standard', filter: [ { type: 'dictionary_decompounder', word_list: [ 'Donau', 'dampf', 'meer', 'schiff' ] } ], text: 'Donaudampfschiff' } ) puts response
const response = await client.indices.analyze({ tokenizer: "standard", filter: [ { type: "dictionary_decompounder", word_list: ["Donau", "dampf", "meer", "schiff"], }, ], text: "Donaudampfschiff", }); console.log(response);
GET _analyze { "tokenizer": "standard", "filter": [ { "type": "dictionary_decompounder", "word_list": ["Donau", "dampf", "meer", "schiff"] } ], "text": "Donaudampfschiff" }
The filter produces the following tokens:
[ Donaudampfschiff, Donau, dampf, schiff ]
Configurable parameters
edit-
word_list
-
(Required*, array of strings) A list of subwords to look for in the token stream. If found, the subword is included in the token output.
Either this parameter or
word_list_path
must be specified. -
word_list_path
-
(Required*, string) Path to a file that contains a list of subwords to find in the token stream. If found, the subword is included in the token output.
This path must be absolute or relative to the
config
location, and the file must be UTF-8 encoded. Each token in the file must be separated by a line break.Either this parameter or
word_list
must be specified. -
max_subword_size
-
(Optional, integer)
Maximum subword character length. Longer subword tokens are excluded from the
output. Defaults to
15
. -
min_subword_size
-
(Optional, integer)
Minimum subword character length. Shorter subword tokens are excluded from the
output. Defaults to
2
. -
min_word_size
-
(Optional, integer)
Minimum word character length. Shorter word tokens are excluded from the
output. Defaults to
5
. -
only_longest_match
-
(Optional, Boolean)
If
true
, only include the longest matching subword. Defaults tofalse
.
Customize and add to an analyzer
editTo customize the dictionary_decompounder
filter, duplicate it to create the
basis for a new custom token filter. You can modify the filter using its
configurable parameters.
For example, the following create index API request
uses a custom dictionary_decompounder
filter to configure a new
custom analyzer.
The custom dictionary_decompounder
filter find subwords in the
analysis/example_word_list.txt
file. Subwords longer than 22 characters are
excluded from the token output.
resp = client.indices.create( index="dictionary_decompound_example", settings={ "analysis": { "analyzer": { "standard_dictionary_decompound": { "tokenizer": "standard", "filter": [ "22_char_dictionary_decompound" ] } }, "filter": { "22_char_dictionary_decompound": { "type": "dictionary_decompounder", "word_list_path": "analysis/example_word_list.txt", "max_subword_size": 22 } } } }, ) print(resp)
const response = await client.indices.create({ index: "dictionary_decompound_example", settings: { analysis: { analyzer: { standard_dictionary_decompound: { tokenizer: "standard", filter: ["22_char_dictionary_decompound"], }, }, filter: { "22_char_dictionary_decompound": { type: "dictionary_decompounder", word_list_path: "analysis/example_word_list.txt", max_subword_size: 22, }, }, }, }, }); console.log(response);
PUT dictionary_decompound_example { "settings": { "analysis": { "analyzer": { "standard_dictionary_decompound": { "tokenizer": "standard", "filter": [ "22_char_dictionary_decompound" ] } }, "filter": { "22_char_dictionary_decompound": { "type": "dictionary_decompounder", "word_list_path": "analysis/example_word_list.txt", "max_subword_size": 22 } } } } }