Standard tokenizer
editStandard tokenizer
editThe standard
tokenizer provides grammar based tokenization (based on the
Unicode Text Segmentation algorithm, as specified in
Unicode Standard Annex #29) and works well
for most languages.
Example output
editresp = client.indices.analyze( tokenizer="standard", text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.", ) print(resp)
response = client.indices.analyze( body: { tokenizer: 'standard', text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." } ) puts response
const response = await client.indices.analyze({ tokenizer: "standard", text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.", }); console.log(response);
POST _analyze { "tokenizer": "standard", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." }
The above sentence would produce the following terms:
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
Configuration
editThe standard
tokenizer accepts the following parameters:
|
The maximum token length. If a token is seen that exceeds this length then
it is split at |
Example configuration
editIn this example, we configure the standard
tokenizer to have a
max_token_length
of 5 (for demonstration purposes):
resp = client.indices.create( index="my-index-000001", settings={ "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "my_tokenizer" } }, "tokenizer": { "my_tokenizer": { "type": "standard", "max_token_length": 5 } } } }, ) print(resp) resp1 = client.indices.analyze( index="my-index-000001", analyzer="my_analyzer", text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.", ) print(resp1)
response = client.indices.create( index: 'my-index-000001', body: { settings: { analysis: { analyzer: { my_analyzer: { tokenizer: 'my_tokenizer' } }, tokenizer: { my_tokenizer: { type: 'standard', max_token_length: 5 } } } } } ) puts response response = client.indices.analyze( index: 'my-index-000001', body: { analyzer: 'my_analyzer', text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." } ) puts response
const response = await client.indices.create({ index: "my-index-000001", settings: { analysis: { analyzer: { my_analyzer: { tokenizer: "my_tokenizer", }, }, tokenizer: { my_tokenizer: { type: "standard", max_token_length: 5, }, }, }, }, }); console.log(response); const response1 = await client.indices.analyze({ index: "my-index-000001", analyzer: "my_analyzer", text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.", }); console.log(response1);
PUT my-index-000001 { "settings": { "analysis": { "analyzer": { "my_analyzer": { "tokenizer": "my_tokenizer" } }, "tokenizer": { "my_tokenizer": { "type": "standard", "max_token_length": 5 } } } } } POST my-index-000001/_analyze { "analyzer": "my_analyzer", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." }
The above example produces the following terms:
[ The, 2, QUICK, Brown, Foxes, jumpe, d, over, the, lazy, dog's, bone ]