_doc_count field

edit

Bucket aggregations always return a field named doc_count showing the number of documents that were aggregated and partitioned in each bucket. Computation of the value of doc_count is very simple. doc_count is incremented by 1 for every document collected in each bucket.

While this simple approach is effective when computing aggregations over individual documents, it fails to accurately represent documents that store pre-aggregated data (such as histogram or aggregate_metric_double fields), because one summary field may represent multiple documents.

To allow for correct computation of the number of documents when working with pre-aggregated data, we have introduced a metadata field type named _doc_count. _doc_count must always be a positive integer representing the number of documents aggregated in a single summary field.

When field _doc_count is added to a document, all bucket aggregations will respect its value and increment the bucket doc_count by the value of the field. If a document does not contain any _doc_count field, _doc_count = 1 is implied by default.

  • A _doc_count field can only store a single positive integer per document. Nested arrays are not allowed.
  • If a document contains no _doc_count fields, aggregators will increment by 1, which is the default behavior.

Example

edit

The following create index API request creates a new index with the following field mappings:

  • my_histogram, a histogram field used to store percentile data
  • my_text, a keyword field used to store a title for the histogram
resp = client.indices.create(
    index="my_index",
    mappings={
        "properties": {
            "my_histogram": {
                "type": "histogram"
            },
            "my_text": {
                "type": "keyword"
            }
        }
    },
)
print(resp)
response = client.indices.create(
  index: 'my_index',
  body: {
    mappings: {
      properties: {
        my_histogram: {
          type: 'histogram'
        },
        my_text: {
          type: 'keyword'
        }
      }
    }
  }
)
puts response
const response = await client.indices.create({
  index: "my_index",
  mappings: {
    properties: {
      my_histogram: {
        type: "histogram",
      },
      my_text: {
        type: "keyword",
      },
    },
  },
});
console.log(response);
PUT my_index
{
  "mappings" : {
    "properties" : {
      "my_histogram" : {
        "type" : "histogram"
      },
      "my_text" : {
        "type" : "keyword"
      }
    }
  }
}

The following index API requests store pre-aggregated data for two histograms: histogram_1 and histogram_2.

resp = client.index(
    index="my_index",
    id="1",
    document={
        "my_text": "histogram_1",
        "my_histogram": {
            "values": [
                0.1,
                0.2,
                0.3,
                0.4,
                0.5
            ],
            "counts": [
                3,
                7,
                23,
                12,
                6
            ]
        },
        "_doc_count": 45
    },
)
print(resp)

resp1 = client.index(
    index="my_index",
    id="2",
    document={
        "my_text": "histogram_2",
        "my_histogram": {
            "values": [
                0.1,
                0.25,
                0.35,
                0.4,
                0.45,
                0.5
            ],
            "counts": [
                8,
                17,
                8,
                7,
                6,
                2
            ]
        },
        "_doc_count": 62
    },
)
print(resp1)
response = client.index(
  index: 'my_index',
  id: 1,
  body: {
    my_text: 'histogram_1',
    my_histogram: {
      values: [
        0.1,
        0.2,
        0.3,
        0.4,
        0.5
      ],
      counts: [
        3,
        7,
        23,
        12,
        6
      ]
    },
    _doc_count: 45
  }
)
puts response

response = client.index(
  index: 'my_index',
  id: 2,
  body: {
    my_text: 'histogram_2',
    my_histogram: {
      values: [
        0.1,
        0.25,
        0.35,
        0.4,
        0.45,
        0.5
      ],
      counts: [
        8,
        17,
        8,
        7,
        6,
        2
      ]
    },
    _doc_count: 62
  }
)
puts response
const response = await client.index({
  index: "my_index",
  id: 1,
  document: {
    my_text: "histogram_1",
    my_histogram: {
      values: [0.1, 0.2, 0.3, 0.4, 0.5],
      counts: [3, 7, 23, 12, 6],
    },
    _doc_count: 45,
  },
});
console.log(response);

const response1 = await client.index({
  index: "my_index",
  id: 2,
  document: {
    my_text: "histogram_2",
    my_histogram: {
      values: [0.1, 0.25, 0.35, 0.4, 0.45, 0.5],
      counts: [8, 17, 8, 7, 6, 2],
    },
    _doc_count: 62,
  },
});
console.log(response1);
PUT my_index/_doc/1
{
  "my_text" : "histogram_1",
  "my_histogram" : {
      "values" : [0.1, 0.2, 0.3, 0.4, 0.5],
      "counts" : [3, 7, 23, 12, 6]
   },
  "_doc_count": 45 
}

PUT my_index/_doc/2
{
  "my_text" : "histogram_2",
  "my_histogram" : {
      "values" : [0.1, 0.25, 0.35, 0.4, 0.45, 0.5],
      "counts" : [8, 17, 8, 7, 6, 2]
   },
  "_doc_count": 62 
}

Field _doc_count must be a positive integer storing the number of documents aggregated to produce each histogram.

If we run the following terms aggregation on my_index:

resp = client.search(
    aggs={
        "histogram_titles": {
            "terms": {
                "field": "my_text"
            }
        }
    },
)
print(resp)
response = client.search(
  body: {
    aggregations: {
      histogram_titles: {
        terms: {
          field: 'my_text'
        }
      }
    }
  }
)
puts response
const response = await client.search({
  aggs: {
    histogram_titles: {
      terms: {
        field: "my_text",
      },
    },
  },
});
console.log(response);
GET /_search
{
    "aggs" : {
        "histogram_titles" : {
            "terms" : { "field" : "my_text" }
        }
    }
}

We will get the following response:

{
    ...
    "aggregations" : {
        "histogram_titles" : {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets" : [
                {
                    "key" : "histogram_2",
                    "doc_count" : 62
                },
                {
                    "key" : "histogram_1",
                    "doc_count" : 45
                }
            ]
        }
    }
}