Max aggregation
editMax aggregation
editA single-value
metrics aggregation that keeps track and returns the maximum
value among the numeric values extracted from the aggregated documents.
The min
and max
aggregation operate on the double
representation of
the data. As a consequence, the result may be approximate when running on longs
whose absolute value is greater than 2^53
.
Computing the max price value across all documents
resp = client.search( index="sales", size="0", aggs={ "max_price": { "max": { "field": "price" } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { max_price: { max: { field: 'price' } } } } ) puts response
const response = await client.search({ index: "sales", size: 0, aggs: { max_price: { max: { field: "price", }, }, }, }); console.log(response);
POST /sales/_search?size=0 { "aggs": { "max_price": { "max": { "field": "price" } } } }
Response:
{ ... "aggregations": { "max_price": { "value": 200.0 } } }
As can be seen, the name of the aggregation (max_price
above) also serves as
the key by which the aggregation result can be retrieved from the returned
response.
Script
editIf you need to get the max
of something more complex than a single field,
run an aggregation on a runtime field.
resp = client.search( index="sales", size=0, runtime_mappings={ "price.adjusted": { "type": "double", "script": "\n double price = doc['price'].value;\n if (doc['promoted'].value) {\n price *= 0.8;\n }\n emit(price);\n " } }, aggs={ "max_price": { "max": { "field": "price.adjusted" } } }, ) print(resp)
response = client.search( index: 'sales', body: { size: 0, runtime_mappings: { 'price.adjusted' => { type: 'double', script: "\n double price = doc['price'].value;\n if (doc['promoted'].value) {\n price *= 0.8;\n }\n emit(price);\n " } }, aggregations: { max_price: { max: { field: 'price.adjusted' } } } } ) puts response
const response = await client.search({ index: "sales", size: 0, runtime_mappings: { "price.adjusted": { type: "double", script: "\n double price = doc['price'].value;\n if (doc['promoted'].value) {\n price *= 0.8;\n }\n emit(price);\n ", }, }, aggs: { max_price: { max: { field: "price.adjusted", }, }, }, }); console.log(response);
POST /sales/_search { "size": 0, "runtime_mappings": { "price.adjusted": { "type": "double", "script": """ double price = doc['price'].value; if (doc['promoted'].value) { price *= 0.8; } emit(price); """ } }, "aggs": { "max_price": { "max": { "field": "price.adjusted" } } } }
Missing value
editThe missing
parameter defines how documents that are missing a value should
be treated. By default they will be ignored but it is also possible to treat
them as if they had a value.
resp = client.search( index="sales", aggs={ "grade_max": { "max": { "field": "grade", "missing": 10 } } }, ) print(resp)
response = client.search( index: 'sales', body: { aggregations: { grade_max: { max: { field: 'grade', missing: 10 } } } } ) puts response
const response = await client.search({ index: "sales", aggs: { grade_max: { max: { field: "grade", missing: 10, }, }, }, }); console.log(response);
Histogram fields
editWhen max
is computed on histogram fields, the result of the aggregation is the maximum
of all elements in the values
array. Note, that the counts
array of the histogram is ignored.
For example, for the following index that stores pre-aggregated histograms with latency metrics for different networks:
resp = client.indices.create( index="metrics_index", mappings={ "properties": { "latency_histo": { "type": "histogram" } } }, ) print(resp) resp1 = client.index( index="metrics_index", id="1", refresh=True, document={ "network.name": "net-1", "latency_histo": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 3, 7, 23, 12, 6 ] } }, ) print(resp1) resp2 = client.index( index="metrics_index", id="2", refresh=True, document={ "network.name": "net-2", "latency_histo": { "values": [ 0.1, 0.2, 0.3, 0.4, 0.5 ], "counts": [ 8, 17, 8, 7, 6 ] } }, ) print(resp2) resp3 = client.search( index="metrics_index", size="0", filter_path="aggregations", aggs={ "max_latency": { "max": { "field": "latency_histo" } } }, ) print(resp3)
response = client.indices.create( index: 'metrics_index', body: { mappings: { properties: { latency_histo: { type: 'histogram' } } } } ) puts response response = client.index( index: 'metrics_index', id: 1, refresh: true, body: { 'network.name' => 'net-1', latency_histo: { values: [ 0.1, 0.2, 0.3, 0.4, 0.5 ], counts: [ 3, 7, 23, 12, 6 ] } } ) puts response response = client.index( index: 'metrics_index', id: 2, refresh: true, body: { 'network.name' => 'net-2', latency_histo: { values: [ 0.1, 0.2, 0.3, 0.4, 0.5 ], counts: [ 8, 17, 8, 7, 6 ] } } ) puts response response = client.search( index: 'metrics_index', size: 0, filter_path: 'aggregations', body: { aggregations: { max_latency: { max: { field: 'latency_histo' } } } } ) puts response
const response = await client.indices.create({ index: "metrics_index", mappings: { properties: { latency_histo: { type: "histogram", }, }, }, }); console.log(response); const response1 = await client.index({ index: "metrics_index", id: 1, refresh: "true", document: { "network.name": "net-1", latency_histo: { values: [0.1, 0.2, 0.3, 0.4, 0.5], counts: [3, 7, 23, 12, 6], }, }, }); console.log(response1); const response2 = await client.index({ index: "metrics_index", id: 2, refresh: "true", document: { "network.name": "net-2", latency_histo: { values: [0.1, 0.2, 0.3, 0.4, 0.5], counts: [8, 17, 8, 7, 6], }, }, }); console.log(response2); const response3 = await client.search({ index: "metrics_index", size: 0, filter_path: "aggregations", aggs: { max_latency: { max: { field: "latency_histo", }, }, }, }); console.log(response3);
PUT metrics_index { "mappings": { "properties": { "latency_histo": { "type": "histogram" } } } } PUT metrics_index/_doc/1?refresh { "network.name" : "net-1", "latency_histo" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [3, 7, 23, 12, 6] } } PUT metrics_index/_doc/2?refresh { "network.name" : "net-2", "latency_histo" : { "values" : [0.1, 0.2, 0.3, 0.4, 0.5], "counts" : [8, 17, 8, 7, 6] } } POST /metrics_index/_search?size=0&filter_path=aggregations { "aggs" : { "max_latency" : { "max" : { "field" : "latency_histo" } } } }
The max
aggregation will return the maximum value of all histogram fields:
{ "aggregations": { "max_latency": { "value": 0.5 } } }