Average bucket aggregation
editAverage bucket aggregation
editA sibling pipeline aggregation which calculates the mean value of a specified metric in a sibling aggregation. The specified metric must be numeric and the sibling aggregation must be a multi-bucket aggregation.
Syntax
edit"avg_bucket": { "buckets_path": "sales_per_month>sales", "gap_policy": "skip", "format": "#,##0.00;(#,##0.00)" }
Parameters
edit-
buckets_path
-
(Required, string)
Path to the buckets to average. For syntax, see
buckets_path
Syntax. -
gap_policy
-
(Optional, string)
Policy to apply when gaps are found in the data. For valid values, see
Dealing with gaps in the data. Defaults to
skip
. -
format
-
(Optional, string)
DecimalFormat pattern for the
output value. If specified, the formatted value is returned in the aggregation’s
value_as_string
property.
Response body
edit-
value
-
(float)
Mean average value for the metric specified in
buckets_path
. -
value_as_string
-
(string)
Formatted output value for the aggregation. This property is only provided if
a
format
is specified in the request.
Example
editThe following avg_monthly_sales
aggregation uses avg_bucket
to calculate
average sales per month:
resp = client.search( size=0, aggs={ "sales_per_month": { "date_histogram": { "field": "date", "calendar_interval": "month" }, "aggs": { "sales": { "sum": { "field": "price" } } } }, "avg_monthly_sales": { "avg_bucket": { "buckets_path": "sales_per_month>sales", "gap_policy": "skip", "format": "#,##0.00;(#,##0.00)" } } }, ) print(resp)
const response = await client.search({ size: 0, aggs: { sales_per_month: { date_histogram: { field: "date", calendar_interval: "month", }, aggs: { sales: { sum: { field: "price", }, }, }, }, avg_monthly_sales: { avg_bucket: { buckets_path: "sales_per_month>sales", gap_policy: "skip", format: "#,##0.00;(#,##0.00)", }, }, }, }); console.log(response);
POST _search { "size": 0, "aggs": { "sales_per_month": { "date_histogram": { "field": "date", "calendar_interval": "month" }, "aggs": { "sales": { "sum": { "field": "price" } } } }, "avg_monthly_sales": { // tag::avg-bucket-agg-syntax[] "avg_bucket": { "buckets_path": "sales_per_month>sales", "gap_policy": "skip", "format": "#,##0.00;(#,##0.00)" } // end::avg-bucket-agg-syntax[] } } }
Start of the |
|
End of the |
The request returns the following response:
{ "took": 11, "timed_out": false, "_shards": ..., "hits": ..., "aggregations": { "sales_per_month": { "buckets": [ { "key_as_string": "2015/01/01 00:00:00", "key": 1420070400000, "doc_count": 3, "sales": { "value": 550.0 } }, { "key_as_string": "2015/02/01 00:00:00", "key": 1422748800000, "doc_count": 2, "sales": { "value": 60.0 } }, { "key_as_string": "2015/03/01 00:00:00", "key": 1425168000000, "doc_count": 2, "sales": { "value": 375.0 } } ] }, "avg_monthly_sales": { "value": 328.33333333333333, "value_as_string": "328.33" } } }