term_vector
editterm_vector
editTerm vectors contain information about the terms produced by the analysis process, including:
- a list of terms.
- the position (or order) of each term.
- the start and end character offsets mapping the term to its origin in the original string.
- payloads (if they are available) — user-defined binary data associated with each term position.
These term vectors can be stored so that they can be retrieved for a particular document.
The term_vector
setting accepts:
|
No term vectors are stored. (default) |
|
Just the terms in the field are stored. |
|
Terms and positions are stored. |
|
Terms and character offsets are stored. |
|
Terms, positions, and character offsets are stored. |
|
Terms, positions, and payloads are stored. |
|
Terms, positions, offsets and payloads are stored. |
The fast vector highlighter requires with_positions_offsets
.
The term vectors API can retrieve whatever is stored.
Setting with_positions_offsets
will double the size of a field’s
index.
resp = client.indices.create( index="my-index-000001", mappings={ "properties": { "text": { "type": "text", "term_vector": "with_positions_offsets" } } }, ) print(resp) resp1 = client.index( index="my-index-000001", id="1", document={ "text": "Quick brown fox" }, ) print(resp1) resp2 = client.search( index="my-index-000001", query={ "match": { "text": "brown fox" } }, highlight={ "fields": { "text": {} } }, ) print(resp2)
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { text: { type: 'text', term_vector: 'with_positions_offsets' } } } } ) puts response response = client.index( index: 'my-index-000001', id: 1, body: { text: 'Quick brown fox' } ) puts response response = client.search( index: 'my-index-000001', body: { query: { match: { text: 'brown fox' } }, highlight: { fields: { text: {} } } } ) puts response
const response = await client.indices.create({ index: "my-index-000001", mappings: { properties: { text: { type: "text", term_vector: "with_positions_offsets", }, }, }, }); console.log(response); const response1 = await client.index({ index: "my-index-000001", id: 1, document: { text: "Quick brown fox", }, }); console.log(response1); const response2 = await client.search({ index: "my-index-000001", query: { match: { text: "brown fox", }, }, highlight: { fields: { text: {}, }, }, }); console.log(response2);
PUT my-index-000001 { "mappings": { "properties": { "text": { "type": "text", "term_vector": "with_positions_offsets" } } } } PUT my-index-000001/_doc/1 { "text": "Quick brown fox" } GET my-index-000001/_search { "query": { "match": { "text": "brown fox" } }, "highlight": { "fields": { "text": {} } } }