Date nanoseconds field type
editDate nanoseconds field type
editThis data type is an addition to the date
data type. However there is an
important distinction between the two. The existing date
data type stores
dates in millisecond resolution. The date_nanos
data type stores dates
in nanosecond resolution, which limits its range of dates from roughly
1970 to 2262, as dates are still stored as a long representing nanoseconds
since the epoch.
Queries on nanoseconds are internally converted to range queries on this long representation, and the result of aggregations and stored fields is converted back to a string depending on the date format that is associated with the field.
Date formats can be customised, but if no format
is specified then it uses
the default:
"strict_date_optional_time_nanos||epoch_millis"
For instance:
resp = client.indices.create( index="my-index-000001", mappings={ "properties": { "date": { "type": "date_nanos" } } }, ) print(resp) resp1 = client.bulk( index="my-index-000001", refresh=True, operations=[ { "index": { "_id": "1" } }, { "date": "2015-01-01" }, { "index": { "_id": "2" } }, { "date": "2015-01-01T12:10:30.123456789Z" }, { "index": { "_id": "3" } }, { "date": 1420070400000 } ], ) print(resp1) resp2 = client.search( index="my-index-000001", sort={ "date": "asc" }, runtime_mappings={ "date_has_nanos": { "type": "boolean", "script": "emit(doc['date'].value.nano != 0)" } }, fields=[ { "field": "date", "format": "strict_date_optional_time_nanos" }, { "field": "date_has_nanos" } ], ) print(resp2)
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { date: { type: 'date_nanos' } } } } ) puts response response = client.bulk( index: 'my-index-000001', refresh: true, body: [ { index: { _id: '1' } }, { date: '2015-01-01' }, { index: { _id: '2' } }, { date: '2015-01-01T12:10:30.123456789Z' }, { index: { _id: '3' } }, { date: 1_420_070_400_000 } ] ) puts response response = client.search( index: 'my-index-000001', body: { sort: { date: 'asc' }, runtime_mappings: { date_has_nanos: { type: 'boolean', script: "emit(doc['date'].value.nano != 0)" } }, fields: [ { field: 'date', format: 'strict_date_optional_time_nanos' }, { field: 'date_has_nanos' } ] } ) puts response
const response = await client.indices.create({ index: "my-index-000001", mappings: { properties: { date: { type: "date_nanos", }, }, }, }); console.log(response); const response1 = await client.bulk({ index: "my-index-000001", refresh: "true", operations: [ { index: { _id: "1", }, }, { date: "2015-01-01", }, { index: { _id: "2", }, }, { date: "2015-01-01T12:10:30.123456789Z", }, { index: { _id: "3", }, }, { date: 1420070400000, }, ], }); console.log(response1); const response2 = await client.search({ index: "my-index-000001", sort: { date: "asc", }, runtime_mappings: { date_has_nanos: { type: "boolean", script: "emit(doc['date'].value.nano != 0)", }, }, fields: [ { field: "date", format: "strict_date_optional_time_nanos", }, { field: "date_has_nanos", }, ], }); console.log(response2);
PUT my-index-000001 { "mappings": { "properties": { "date": { "type": "date_nanos" } } } } PUT my-index-000001/_bulk?refresh { "index" : { "_id" : "1" } } { "date": "2015-01-01" } { "index" : { "_id" : "2" } } { "date": "2015-01-01T12:10:30.123456789Z" } { "index" : { "_id" : "3" } } { "date": 1420070400000 } GET my-index-000001/_search { "sort": { "date": "asc"}, "runtime_mappings": { "date_has_nanos": { "type": "boolean", "script": "emit(doc['date'].value.nano != 0)" } }, "fields": [ { "field": "date", "format": "strict_date_optional_time_nanos" }, { "field": "date_has_nanos" } ] }
The |
|
This document uses a plain date. |
|
This document includes a time. |
|
This document uses milliseconds-since-the-epoch. |
|
Note that the |
|
Use |
|
You can specify the format when fetching data using the |
You can also specify multiple date formats separated by ||
. The
same mapping parameters than with the date
field can be used.
Date nanoseconds
will accept numbers with a decimal point like {"date": 1618249875.123456}
but there are some cases (#70085) where we’ll lose precision
on those dates so they should be avoided.
Limitations
editAggregations are still on millisecond resolution, even when using a date_nanos
field. This limitation also affects transforms.
Synthetic _source
editSynthetic _source
is Generally Available only for TSDB indices
(indices that have index.mode
set to time_series
). For other indices
synthetic _source
is in technical preview. Features in technical preview may
be changed or removed in a future release. Elastic will work to fix
any issues, but features in technical preview are not subject to the support SLA
of official GA features.
Synthetic source may sort date_nanos
field values. For example:
const response = await client.indices.create({ index: "idx", settings: { index: { mapping: { source: { mode: "synthetic", }, }, }, }, mappings: { properties: { date: { type: "date_nanos", }, }, }, }); console.log(response); const response1 = await client.index({ index: "idx", id: 1, document: { date: ["2015-01-01T12:10:30.000Z", "2014-01-01T12:10:30.000Z"], }, }); console.log(response1);
PUT idx { "settings": { "index": { "mapping": { "source": { "mode": "synthetic" } } } }, "mappings": { "properties": { "date": { "type": "date_nanos" } } } } PUT idx/_doc/1 { "date": ["2015-01-01T12:10:30.000Z", "2014-01-01T12:10:30.000Z"] }
Will become:
{ "date": ["2014-01-01T12:10:30.000Z", "2015-01-01T12:10:30.000Z"] }