Preview datafeeds API
editPreview datafeeds API
editPreviews a datafeed.
Request
editGET _ml/datafeeds/<datafeed_id>/_preview
POST _ml/datafeeds/<datafeed_id>/_preview
GET _ml/datafeeds/_preview
POST _ml/datafeeds/_preview
Prerequisites
editRequires the following privileges:
-
cluster:
manage_ml
(themachine_learning_admin
built-in role grants this privilege) -
source index configured in the datafeed:
read
.
Description
editThe preview datafeeds API returns the first "page" of search results from a datafeed. You can preview an existing datafeed or provide configuration details for the datafeed and anomaly detection job in the API. The preview shows the structure of the data that will be passed to the anomaly detection engine.
When Elasticsearch security features are enabled, the datafeed query is previewed using the credentials of the user calling the preview datafeed API. When the datafeed is started it runs the query using the roles of the last user to create or update it. If the two sets of roles differ then the preview may not accurately reflect what the datafeed will return when started. To avoid such problems, the same user that creates or updates the datafeed should preview it to ensure it is returning the expected data. Alternatively, use secondary authorization headers to supply the credentials.
Path parameters
edit-
<datafeed_id>
-
(Optional, string) A numerical character string that uniquely identifies the datafeed. This identifier can contain lowercase alphanumeric characters (a-z and 0-9), hyphens, and underscores. It must start and end with alphanumeric characters.
If you provide the
<datafeed_id>
as a path parameter, you cannot provide datafeed or anomaly detection job configuration details in the request body.
Query parameters
edit-
end
-
(Optional, string) The time that the datafeed preview should end. The preview may not go to the end of the provided value as only the first page of results are returned. The time can be specified by using one of the following formats:
-
ISO 8601 format with milliseconds, for example
2017-01-22T06:00:00.000Z
-
ISO 8601 format without milliseconds, for example
2017-01-22T06:00:00+00:00
-
Milliseconds since the epoch, for example
1485061200000
Date-time arguments using either of the ISO 8601 formats must have a time zone designator, where
Z
is accepted as an abbreviation for UTC time.When a URL is expected (for example, in browsers), the
+
used in time zone designators must be encoded as%2B
.This value is exclusive.
-
ISO 8601 format with milliseconds, for example
-
start
-
(Optional, string) The time that the datafeed preview should begin, which can be
specified by using the same formats as the
end
parameter. This value is inclusive.
If you don’t provide either the start
or end
parameter, the datafeed preview will search over the entire
time of data but exclude data within cold
or frozen
data tiers.
Request body
edit-
datafeed_config
- (Optional, object) The datafeed definition to preview. For valid definitions, see the create datafeeds API.
-
job_config
-
(Optional, object) The configuration details for the anomaly detection job that is
associated with the datafeed. If the
datafeed_config
object does not include ajob_id
that references an existing anomaly detection job, you must supply thisjob_config
object. If you include both ajob_id
and ajob_config
, the latter information is used. You cannot specify ajob_config
object unless you also supply adatafeed_config
object. For valid definitions, see the create anomaly detection jobs API.
Examples
editThis is an example of providing the ID of an existing datafeed:
GET _ml/datafeeds/datafeed-high_sum_total_sales/_preview
The data that is returned for this example is as follows:
[ { "order_date" : 1574294659000, "category.keyword" : "Men's Clothing", "customer_full_name.keyword" : "Sultan Al Benson", "taxful_total_price" : 35.96875 }, { "order_date" : 1574294918000, "category.keyword" : [ "Women's Accessories", "Women's Clothing" ], "customer_full_name.keyword" : "Pia Webb", "taxful_total_price" : 83.0 }, { "order_date" : 1574295782000, "category.keyword" : [ "Women's Accessories", "Women's Shoes" ], "customer_full_name.keyword" : "Brigitte Graham", "taxful_total_price" : 72.0 } ]
The following example provides datafeed and anomaly detection job configuration details in the API:
POST _ml/datafeeds/_preview { "datafeed_config": { "indices" : [ "kibana_sample_data_ecommerce" ], "query" : { "bool" : { "filter" : [ { "term" : { "_index" : "kibana_sample_data_ecommerce" } } ] } }, "scroll_size" : 1000 }, "job_config": { "description" : "Find customers spending an unusually high amount in an hour", "analysis_config" : { "bucket_span" : "1h", "detectors" : [ { "detector_description" : "High total sales", "function" : "high_sum", "field_name" : "taxful_total_price", "over_field_name" : "customer_full_name.keyword" } ], "influencers" : [ "customer_full_name.keyword", "category.keyword" ] }, "analysis_limits" : { "model_memory_limit" : "10mb" }, "data_description" : { "time_field" : "order_date", "time_format" : "epoch_ms" } } }
The data that is returned for this example is as follows:
[ { "order_date" : 1574294659000, "category.keyword" : "Men's Clothing", "customer_full_name.keyword" : "Sultan Al Benson", "taxful_total_price" : 35.96875 }, { "order_date" : 1574294918000, "category.keyword" : [ "Women's Accessories", "Women's Clothing" ], "customer_full_name.keyword" : "Pia Webb", "taxful_total_price" : 83.0 }, { "order_date" : 1574295782000, "category.keyword" : [ "Women's Accessories", "Women's Shoes" ], "customer_full_name.keyword" : "Brigitte Graham", "taxful_total_price" : 72.0 } ]