Update model snapshots API

edit

Updates certain properties of a snapshot.

Request

edit

POST _ml/anomaly_detectors/<job_id>/model_snapshots/<snapshot_id>/_update

Prerequisites

edit

Requires the manage_ml cluster privilege. This privilege is included in the machine_learning_admin built-in role.

Path parameters

edit
<job_id>
(Required, string) Identifier for the anomaly detection job.
<snapshot_id>
(Required, string) Identifier for the model snapshot.

Request body

edit

The following properties can be updated after the model snapshot is created:

description
(Optional, string) A description of the model snapshot.
retain
(Optional, Boolean) If true, this snapshot will not be deleted during automatic cleanup of snapshots older than model_snapshot_retention_days. However, this snapshot will be deleted when the job is deleted. The default value is false.

Examples

edit
resp = client.ml.update_model_snapshot(
    job_id="it_ops_new_logs",
    snapshot_id="1491852978",
    description="Snapshot 1",
    retain=True,
)
print(resp)
response = client.ml.update_model_snapshot(
  job_id: 'it_ops_new_logs',
  snapshot_id: 1_491_852_978,
  body: {
    description: 'Snapshot 1',
    retain: true
  }
)
puts response
const response = await client.ml.updateModelSnapshot({
  job_id: "it_ops_new_logs",
  snapshot_id: 1491852978,
  description: "Snapshot 1",
  retain: true,
});
console.log(response);
POST
_ml/anomaly_detectors/it_ops_new_logs/model_snapshots/1491852978/_update
{
  "description": "Snapshot 1",
  "retain": true
}

When the snapshot is updated, you receive the following results:

{
  "acknowledged": true,
  "model": {
    "job_id": "it_ops_new_logs",
    "timestamp": 1491852978000,
    "description": "Snapshot 1",
...
    "retain": true
  }
}