Geo-grid query
editGeo-grid query
editMatches geo_point
and geo_shape
values that
intersect a grid cell from a GeoGrid aggregation.
The query is designed to match the documents that fall inside a bucket of a geogrid aggregation by providing the key of the bucket. For geohash and geotile grids, the query can be used for geo_point and geo_shape fields. For geo_hex grid, it can only be used for geo_point fields.
Example
editAssume the following the following documents are indexed:
resp = client.indices.create( index="my_locations", mappings={ "properties": { "location": { "type": "geo_point" } } }, ) print(resp) resp1 = client.index( index="my_locations", id="1", refresh=True, document={ "location": "POINT(4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum" }, ) print(resp1) resp2 = client.index( index="my_locations", id="2", refresh=True, document={ "location": "POINT(4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis" }, ) print(resp2) resp3 = client.index( index="my_locations", id="3", refresh=True, document={ "location": "POINT(2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre" }, ) print(resp3)
response = client.indices.create( index: 'my_locations', body: { mappings: { properties: { location: { type: 'geo_point' } } } } ) puts response response = client.index( index: 'my_locations', id: 1, refresh: true, body: { location: 'POINT(4.912350 52.374081)', city: 'Amsterdam', name: 'NEMO Science Museum' } ) puts response response = client.index( index: 'my_locations', id: 2, refresh: true, body: { location: 'POINT(4.405200 51.222900)', city: 'Antwerp', name: 'Letterenhuis' } ) puts response response = client.index( index: 'my_locations', id: 3, refresh: true, body: { location: 'POINT(2.336389 48.861111)', city: 'Paris', name: 'Musée du Louvre' } ) puts response
const response = await client.indices.create({ index: "my_locations", mappings: { properties: { location: { type: "geo_point", }, }, }, }); console.log(response); const response1 = await client.index({ index: "my_locations", id: 1, refresh: "true", document: { location: "POINT(4.912350 52.374081)", city: "Amsterdam", name: "NEMO Science Museum", }, }); console.log(response1); const response2 = await client.index({ index: "my_locations", id: 2, refresh: "true", document: { location: "POINT(4.405200 51.222900)", city: "Antwerp", name: "Letterenhuis", }, }); console.log(response2); const response3 = await client.index({ index: "my_locations", id: 3, refresh: "true", document: { location: "POINT(2.336389 48.861111)", city: "Paris", name: "Musée du Louvre", }, }); console.log(response3);
PUT /my_locations { "mappings": { "properties": { "location": { "type": "geo_point" } } } } PUT /my_locations/_doc/1?refresh { "location" : "POINT(4.912350 52.374081)", "city": "Amsterdam", "name": "NEMO Science Museum" } PUT /my_locations/_doc/2?refresh { "location" : "POINT(4.405200 51.222900)", "city": "Antwerp", "name": "Letterenhuis" } PUT /my_locations/_doc/3?refresh { "location" : "POINT(2.336389 48.861111)", "city": "Paris", "name": "Musée du Louvre" }
geohash grid
editUsing a geohash_grid aggregation, it is possible to group documents depending on their geohash value:
resp = client.search( index="my_locations", size=0, aggs={ "grouped": { "geohash_grid": { "field": "location", "precision": 2 } } }, ) print(resp)
response = client.search( index: 'my_locations', body: { size: 0, aggregations: { grouped: { geohash_grid: { field: 'location', precision: 2 } } } } ) puts response
const response = await client.search({ index: "my_locations", size: 0, aggs: { grouped: { geohash_grid: { field: "location", precision: 2, }, }, }, }); console.log(response);
GET /my_locations/_search { "size" : 0, "aggs" : { "grouped" : { "geohash_grid" : { "field" : "location", "precision" : 2 } } } }
{ "took" : 10, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "grouped" : { "buckets" : [ { "key" : "u1", "doc_count" : 2 }, { "key" : "u0", "doc_count" : 1 } ] } } }
We can extract the documents on one of those buckets by executing a geo_grid query using the bucket key with the following syntax:
resp = client.search( index="my_locations", query={ "geo_grid": { "location": { "geohash": "u0" } } }, ) print(resp)
const response = await client.search({ index: "my_locations", query: { geo_grid: { location: { geohash: "u0", }, }, }, }); console.log(response);
GET /my_locations/_search { "query": { "geo_grid" :{ "location" : { "geohash" : "u0" } } } }
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_locations", "_id" : "3", "_score" : 1.0, "_source" : { "location" : "POINT(2.336389 48.861111)", "city" : "Paris", "name" : "Musée du Louvre" } } ] } }
geotile grid
editUsing a geotile_grid aggregation, it is possible to group documents depending on their geotile value:
resp = client.search( index="my_locations", size=0, aggs={ "grouped": { "geotile_grid": { "field": "location", "precision": 6 } } }, ) print(resp)
response = client.search( index: 'my_locations', body: { size: 0, aggregations: { grouped: { geotile_grid: { field: 'location', precision: 6 } } } } ) puts response
const response = await client.search({ index: "my_locations", size: 0, aggs: { grouped: { geotile_grid: { field: "location", precision: 6, }, }, }, }); console.log(response);
GET /my_locations/_search { "size" : 0, "aggs" : { "grouped" : { "geotile_grid" : { "field" : "location", "precision" : 6 } } } }
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "grouped" : { "buckets" : [ { "key" : "6/32/21", "doc_count" : 2 }, { "key" : "6/32/22", "doc_count" : 1 } ] } } }
We can extract the documents on one of those buckets by executing a geo_grid query using the bucket key with the following syntax:
resp = client.search( index="my_locations", query={ "geo_grid": { "location": { "geotile": "6/32/22" } } }, ) print(resp)
const response = await client.search({ index: "my_locations", query: { geo_grid: { location: { geotile: "6/32/22", }, }, }, }); console.log(response);
GET /my_locations/_search { "query": { "geo_grid" :{ "location" : { "geotile" : "6/32/22" } } } }
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_locations", "_id" : "3", "_score" : 1.0, "_source" : { "location" : "POINT(2.336389 48.861111)", "city" : "Paris", "name" : "Musée du Louvre" } } ] } }
geohex grid
editUsing a geohex_grid aggregation, it is possible to group documents depending on their geohex value:
resp = client.search( index="my_locations", size=0, aggs={ "grouped": { "geohex_grid": { "field": "location", "precision": 1 } } }, ) print(resp)
const response = await client.search({ index: "my_locations", size: 0, aggs: { grouped: { geohex_grid: { field: "location", precision: 1, }, }, }, }); console.log(response);
GET /my_locations/_search { "size" : 0, "aggs" : { "grouped" : { "geohex_grid" : { "field" : "location", "precision" : 1 } } } }
{ "took" : 2, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 3, "relation" : "eq" }, "max_score" : null, "hits" : [ ] }, "aggregations" : { "grouped" : { "buckets" : [ { "key" : "81197ffffffffff", "doc_count" : 2 }, { "key" : "811fbffffffffff", "doc_count" : 1 } ] } } }
We can extract the documents on one of those buckets by executing a geo_grid query using the bucket key with the following syntax:
resp = client.search( index="my_locations", query={ "geo_grid": { "location": { "geohex": "811fbffffffffff" } } }, ) print(resp)
const response = await client.search({ index: "my_locations", query: { geo_grid: { location: { geohex: "811fbffffffffff", }, }, }, }); console.log(response);
GET /my_locations/_search { "query": { "geo_grid" :{ "location" : { "geohex" : "811fbffffffffff" } } } }
{ "took" : 26, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "my_locations", "_id" : "3", "_score" : 1.0, "_source" : { "location" : "POINT(2.336389 48.861111)", "city" : "Paris", "name" : "Musée du Louvre" } } ] } }