IMPORTANT: No additional bug fixes or documentation updates
will be released for this version. For the latest information, see the
current release documentation.
Logs anomaly detection configurations
editLogs anomaly detection configurations
editThese anomaly detection jobs appear by default in the
Logs app in Kibana. For more details, see the
datafeed and job definitions in the logs_ui_*
folders in
GitHub.
- log_entry_categories_count
-
- For log entry categories via the Logs UI.
-
Models the occurrences of log events (
partition_field_name
isevent.dataset
). -
Detects anomalies in count of log entries by category (using the
count
function).
- log_entry_rate
-
- For log entries via the Logs UI.
-
Models ingestion rates (
partition_field_name
isevent.dataset
). -
Detects anomalies in the log entry ingestion rate (using the
low_count
function).