- X-Pack Reference for 6.0-6.2 and 5.x:
- Introduction
- Setting Up X-Pack
- Breaking Changes
- X-Pack APIs
- Graphing Connections in Your Data
- Profiling your Queries and Aggregations
- Reporting from Kibana
- Securing the Elastic Stack
- Getting Started with Security
- How Security Works
- Setting Up User Authentication
- Configuring SAML Single-Sign-On on the Elastic Stack
- Configuring Role-based Access Control
- Auditing Security Events
- Encrypting Communications
- Restricting Connections with IP Filtering
- Cross Cluster Search, Tribe, Clients and Integrations
- Reference
- Monitoring the Elastic Stack
- Alerting on Cluster and Index Events
- Machine Learning in the Elastic Stack
- Troubleshooting
- Getting Help
- X-Pack security
- Can’t log in after upgrading to 6.2.4
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- X-Pack Watcher
- X-Pack monitoring
- X-Pack machine learning
- Limitations
- License Management
- Release Notes
WARNING: Version 6.2 of the Elastic Stack has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Buckets
editBuckets
editThe X-Pack machine learning features use the concept of a bucket to divide the time series into batches for processing.
The bucket span is part of the configuration information for a job. It defines the time interval that is used to summarize and model the data. This is typically between 5 minutes to 1 hour and it depends on your data characteristics. When you set the bucket span, take into account the granularity at which you want to analyze, the frequency of the input data, the typical duration of the anomalies, and the frequency at which alerting is required.
When you view your machine learning results, each bucket has an anomaly score. This score is a statistically aggregated and normalized view of the combined anomalousness of all the record results in the bucket. If you have more than one job, you can also obtain overall bucket results, which combine and correlate anomalies from multiple jobs into an overall score. When you view the results for jobs groups in Kibana, it provides the overall bucket scores.
For more information, see Results Resources and Get Overall Buckets API.
ElasticON events are back!
Learn about the Elastic Search AI Platform from the experts at our live events.
Register now