
Building a great search experience workshop

Table of Contents

Building a great search experience workshop . 1

Create an Enterprise Search deployment . 1

Add data to App Search . 3

Customize your search interface. 5

Using The Search UI. 7

Sorting and Pagination . 15

Building a great search experience workshop

Create an Enterprise Search deployment

In this section, you are going to learn how to create an Enterprise Search deployment using the Elastic Cloud.

1. Go to https://cloud.elastic.co.

2. Click on the "Sign up" link.

3. Enter your email and choose a password.

4. Click on "Start your free trial". If you already started your free trial, click on "Create deployment".

5. Select the type of deployment you want to use. For this workshop, let’s select the Elastic Enterprise
Search deployment.

6. Expand the deployment settings section, select the cloud provider of your choice along with the closest
location, and keep the latest version of the Elastic Stack.

7. Name your deployment, for example, "enterprise-search-workshop" and click on "Create deployment".

8. Please copy the elastic password and download the CSV file. You will be using it later.

Building a great search experience workshop 1

https://cloud.elastic.co

9. Wait a couple of minutes for your deployment to be ready then click on "Open Enterprise Search".

10. Log in as the elastic user and use the password you copied from the previous step.

Building a great search experience workshop 2

Add data to App Search

In this section, you are going to use the sample engine in order to get quickly started.

1. Once you are logged in to Enterprise Search, click on "Launch App Search".

2. For this workshop, you will be using an engine that already contains data. Click on "Try a Sample Engine" to
get started.

3. After few seconds, your engine will be ready. Notice that you have a total of 59 documents in this engine. This
sample engine contains all the national park in the United States, each document is related to a particular
park. Let’s take some time to explore this new engine, click on "Query Tester".

Building a great search experience workshop 3

4. In this view, you can test your queries and see what documents are returned. Get familiar with this dataset by
running some queries. For example, you could search for parks that contains "waterfalls".

5. When using the sample engine, some tuning has been pre-defined for you. You can see how this engine has
been setup by opening the following options on the left-hand side menu:

a. Synonyms

b. Curations

c. Relevance Tuning

Building a great search experience workshop 4

Customize your search interface

In this section, you will get familiar with the reference UI which allows you to customize the search experience for
your users.

1. Click on "Reference UI" on the left-hand side.

2. On this view, you can define the fields that will be used in your search UI. Select the following fields:

a. select title for the title field

b. select states for the filter field

c. for the sort fields, select visitors, and acres

d. select nps_link for the URL field

Then click on "Generate a Preview".

3. Start by searching for "waterfalls". Notice that as you are typing the first letter, App Search will automatically
suggest queries for you based on the documents of your engine.

4. Filter the parks from "California" and display the biggest parks first.

Building a great search experience workshop 5

5. Click on the title of the first result. You will be redirected to the page defined by the nps_link field of this
document.

6. Click on "Download ZIP Package" at the top-right corner of the page. This will generate a ZIP file that contains
the source code that you can use in your application.

7. Finally, click on "Back to configuration" to return to App Search.

Building a great search experience workshop 6

Using The Search UI

In this section, you will be creating a custom User Interface using the Search UI. You will start from a blank page
and you will be adding, step by step, components that makes a great search interface for your users.

By the end of this workshop, you will have created a search interface similar to this demo.

Get Started

1. The search UI is a React library, let’s start by creating a sample react project. You can create this project
locally or use an online IDE such as https://codesandbox.io/ which will help you to quickly get started.

2. Open https://codesandbox.io/ and create a new sandbox. Select the React template.

3. Start by setting up the connector between your front-end application and App Search.

First, import the connector.

import AppSearchAPIConnector
from "@elastic/search-ui-app-search-connector";

You will need to add this new dependency to your project, you can easily do that by clicking on the blue button.

Building a great search experience workshop 7

https://swiftype.com/search-ui
https://codesandbox.io/s/elasticappsearchdemo-8b1np
https://codesandbox.io/
https://codesandbox.io/

Then, set up the connector.

const connector = new AppSearchAPIConnector({
 engineName: "national-parks-demo",
 endpointBase: "XXX",
 searchKey: "XXX"
});

4. Get your credentials from the App Search interface. On the left panel, click on "Credentials" and copy the API
Endpoint and the search-key. If you are using Codesandbox or any online IDE, the code can be publicly
distributed, therefore make sure to use a disposable DEV/TEST deployment or search-key, so you can delete
after you finish the exercises.

5. Your front-end application is now connected to App Search. Next, you are going to add components to build
your own search interface. First you need to add the SearchProvider component which will be the top level
component of your Search UI implementation. Replace the current HTML content with the following lines:

Building a great search experience workshop 8

export default function App() {
 return (
 <SearchProvider
 config={{
 apiConnector: connector
 }}>
 </SearchProvider>
)
}

You also need to import this new component in your application, add the following line at the top of your file,
and install this new dependency.

import {
 SearchProvider
} from "@elastic/react-search-ui";

Add Basic Components

1. You are now ready to add your components. Add a SearchBox component in your application.

First, import this new component:

import {
 SearchProvider,
 SearchBox
} from "@elastic/react-search-ui";

Then, add this new component inside the SearchProvider component:

<SearchProvider
 config={{
 apiConnector: connector
 }}>
 <SearchBox />
</SearchProvider>

2. You can see on the right-hand side that you now have a tiny search box. You can perform some queries,
however, you are not going to see any results. This is because you need to add the Results component in
order to display these results. Add this component under the search box.

Building a great search experience workshop 9

<SearchProvider
 config={{
 apiConnector: connector
 }}>
 <SearchBox />
 <Results />
</SearchProvider>

Note: Make sure to add this component in the list of imports from @elastic/react-search-ui.

3. Try your search box on the right-hand side. You can see that you get results coming from the engine that you
set up earlier.

4. This interface is not really friendly at this moment, let’s add some style to improve it. You can either define your
own style or use the built-in styles that come with the Search UI.

Add the predefined styles from the Search UI.

import "@elastic/react-search-ui-views/lib/styles/styles.css";

5. It already looks much better but let’s go one step further by customizing the Results component. There are
few things that you can customize. For example, let’s define the titleField and the urlField.

<Results titleField="title" urlField="nps_link" />

The title field of the document is displayed as a header and if you click on it a new tab will be opened based
on the nps_link field.

Autocompletion

1. You can improve your search bar by adding autocompletion. With the search UI, there are two types of
autocompletion that you can set up:

a. autocompleteResults : this will suggest search results based on your users' input. The user will be
directly directed to a link when clicking on the suggestion.

b. autocompleteSuggestions : this will suggest search queries based on your users' input. If the user
clicks on the suggestion, it will act as a regular search query.

2. Start by adding autocompleteResults to your search box.

Building a great search experience workshop 10

https://github.com/elastic/search-ui/blob/master/ADVANCED.md#results

<SearchBox
 autocompleteResults={{
 linkTarget: "_blank",
 titleField: "title",
 urlField: "nps_link"
 }}
/>

3. In your search box, type "mou". You will see some suggested results, click on the "Rocky Mountain"
suggestion.

4. You can also add highlighting to your suggestions, let’s update the config to do so. Update the config part of
your application as follow:

<SearchProvider
 config={{
 apiConnector: connector,
 autocompleteQuery: {
 results: {
 result_fields: {
 title: { snippet: { size: 100, fallback: true } },
 nps_link: {
 raw: {}
 }
 }
 }
 }
 }}
>
...
</SearchProvider>

Now, when you are running a new query in your search box you can see highlighting in the suggestions.

5. Next, let’s add autocompleteSuggestions to the search box. In order not to confuse both suggestions, you
can set up a sectionTitle for each part.

Building a great search experience workshop 11

<SearchBox
 autocompleteResults={{
 linkTarget: "_blank",
 sectionTitle: "Suggested Results",
 titleField: "title",
 urlField: "nps_link"
 }}
 autocompleteSuggestions={{
 sectionTitle: "Suggested Queries"
 }}
/>

6. Search again for "mou" and see that you now have different suggestions.

Faceting

Facets are an import part of your search experience, they allow the user to quickly filter the results of their
queries. With Search UI, you have full control of the filters you want to display.

1. Create a new facet on the field states and limit the number of results to 3.

First, add the new component under the SearchBox:

<SearchBox
...
/>
<Facet field="states" label="States" />
<Results titleField="title" urlField="nps_link" />

Note: You need to add Facet in the list of imports.

You also need to update the configuration to include this field in the facets:

Building a great search experience workshop 12

<SearchProvider
 config={{
 apiConnector: connector,
 autocompleteQuery: {
 ...
 },
 searchQuery: {
 facets: {
 states: { type: "value", size: 3 }
 }
 }
 }}
>
...
</SearchProvider>

2. Let’s define a second facet to create a filter based on the number of users. You will define 3 ranges:

a. 0-100000 = "Quiet"

b. 100000-500000 = "Moderate"

c. 500000 and more = "Busy"

Add this new facet under the previous one.

<SearchBox
...
/>
<Facet field="states" label="States" />
<Facet field="visitors" label="Number of visitors" />
<Results titleField="title" urlField="nps_link" />

Update the configuration to define the custom ranges.

Building a great search experience workshop 13

<SearchProvider
 config={{
 apiConnector: connector,
 autocompleteQuery: {
 ...
 },
 searchQuery: {
 facets: {
 states: { type: "value", size: 3 },
 visitors: {
 type: "range",
 ranges: [
 { from: 0, to: 100000, name: "Quiet" },
 { from: 100000, to: 500000, name: "Moderate" },
 { from: 500000, name: "Busy" }
]
 }
 }
 }
 }}
>
...
</SearchProvider>

Layout

Your search experience is now functional, however, you can improve how your components are displayed. Using
the Layout helps you to easily assemble your components on the user interface.

1. Start by importing the Layout component.

import {Layout} from "@elastic/react-search-ui-views";

2. You currently have all of your components at the same level. Create a new Layout component inside the
SearchProvider component and rearrange the existing component as follow:

a. the SearchBox should be in the header

b. the Results should be in the bodyContent

c. the Facet should be on the sideContent (note: because you have two facets, you need to wrap these two
components inside a div)

Building a great search experience workshop 14

<SearchProvider
 config={{
 ...
 }}
>
 <Layout
 header = {
 <SearchBox
 autocompleteResults={{
 linkTarget: "_blank",
 sectionTitle: "Suggested Results",
 titleField: "title",
 urlField: "nps_link"
 }}
 autocompleteSuggestions={{
 sectionTitle: "Suggested Queries"
 }}
 />
 }
 bodyContent = {
 <Results titleField="title" urlField="nps_link" />
 }
 sideContent = {
 <div>
 <Facet field="states" label="States" />
 <Facet field="visitors" label="Number of visitors" />
 </div>
 }
 />

</SearchProvider>

3. Your components have been moved around. Your facets should be on the left-hand side but notice that if you
change the size of the browser, the layout is automatically updated. You have a responsive design that can be
used on both small and wide screens.

Sorting and Pagination

By default, your users get the most relevant results first and they can see the first 20 results. You can change this
behavior by adding custom sorting option and add the possibility for the users to navigate through several pages
of results.

1. Let’s start by adding new sort options. On the sideContent add a Sorting component that have three
options:

a. by relevance

b. by title (asc)

c. by title (desc)

Building a great search experience workshop 15

<div>
 <Facet field="states" label="States" />
 <Facet field="visitors" label="Number of visitors" />
 <Sorting
 sortOptions={[
 {
 name: "Relevance",
 value: "",
 direction: ""
 },
 {
 name: "Title (asc)",
 value: "title",
 direction: "asc"
 },
 {
 name: "Title (desc)",
 value: "title",
 direction: "desc"
 }
]}
 />
</div>

2. You can also combine the component from the Search UI with other component. Let’s use components from
the famous Material UI framework. Use the Divider component to separate the sort options from the facets.

Import the new component.

import Divider from "@material-ui/core/Divider";

Add the Divider between the two Facet and Sorting components.

<div>
 <Facet field="states" label="States" />
 <Facet field="visitors" label="Number of visitors" />
 <Sorting
 ...
 />
</div>

3. Finally, let’s add some pagination. Add a Paging component in the bodyHeader section.

Building a great search experience workshop 16

https://material-ui.com/

bodyHeader={
 <Paging />
}

4. When searching for "mountains", you now have two pages of results. By default, you have 20 results per page.
You can change this default behavior by defining the initialState in the config.

config={{
 apiConnector: connector,
 initialState: {
 resultsPerPage: 5
 },
 ...
}}

5. Note that this update will not be directly reflected on the right-hand side preview. You need to clean up the
URL to remove the parameter size=n_20_n.

6. You can also leave the possibility for the user to choose their own number of results per page by using the
ResultsPerPage component.

bodyHeader={
 <React.Fragment>
 <Paging />
 <ResultsPerPage />
 </React.Fragment>
}

7. If you are using Codesandbox or any online IDE, make sure to delete the deployment or the search-key.

Building a great search experience workshop 17

Building a great search experience workshop

Version: 7.9-0

© 2015-2020 Elasticsearch BV. All rights reserved. Decompiling, copying, publishing and/or distribution without
written consent of Elasticsearch BV is strictly prohibited.

Building a great search experience workshop 18

	Building a great search experience workshop
	Table of Contents
	Building a great search experience workshop
	Create an Enterprise Search deployment
	Add data to App Search
	Customize your search interface
	Using The Search UI
	Sorting and Pagination

