Autodiscover
editAutodiscover
editWhen you run applications on containers, they become moving targets to the monitoring system. Autodiscover allows you to track them and adapt settings as changes happen. By defining configuration templates, the autodiscover subsystem can monitor services as they start running.
You define autodiscover settings in the heartbeat.autodiscover
section of the heartbeat.yml
config file. To enable autodiscover, you specify a list of providers.
Providers
editAutodiscover providers work by watching for events on the system and translating those events into internal autodiscover events with a common format. When you configure the provider, you can optionally use fields from the autodiscover event to set conditions that, when met, launch specific configurations.
On start, Heartbeat will scan existing containers and launch the proper configs for them. Then it will watch for new start/stop events. This ensures you don’t need to worry about state, but only define your desired configs.
Docker
editThe Docker autodiscover provider watches for Docker containers to start and stop.
These are the available fields during within config templating. The docker.*
fields will be available on each emitted event.
event:
- host
- port
- docker.container.id
- docker.container.image
- docker.container.name
- docker.container.labels
For example:
{ "host": "10.4.15.9", "port": 6379, "docker": { "container": { "id": "382184ecdb385cfd5d1f1a65f78911054c8511ae009635300ac28b4fc357ce51" "name": "redis", "image": "redis:3.2.11", "labels": { "io.kubernetes.pod.namespace": "default" ... } } } }
You can define a set of configuration templates to be applied when the condition matches an event. Templates define a condition to match on autodiscover events, together with the list of configurations to launch when this condition happens.
Conditions match events from the provider. Providers use the same format for Conditions that processors use.
Configuration templates can contain variables from the autodiscover event. They can be accessed under the data
namespace.
For example, with the example event, "${data.port}
" resolves to 6379
.
Heartbeat supports templates for modules:
heartbeat.autodiscover: providers: - type: docker templates: - condition: contains: docker.container.image: redis config: - type: tcp hosts: ["${data.host}:${data.port}"] schedule: "@every 1s" timeout: 1s
This configuration launches a redis
monitor for all containers running an image with redis
in the name.
Kubernetes
editThe Kubernetes autodiscover provider watches for Kubernetes nodes, pods, services to start, update, and stop.
These are the available fields during within config templating. The kubernetes.*
fields will be available on each emitted event.
Generic fields:
edit- host
- port (if exposed)
- kubernetes.labels
- kubernetes.annotations
Pod specific:
edit- kubernetes.container.id
- kubernetes.container.image
- kubernetes.container.name
- kubernetes.namespace
- kubernetes.node.name
- kubernetes.pod.name
- kubernetes.pod.uid
Node specific:
edit- kubernetes.node.name
- kubernetes.node.uid
Service specific:
edit- kubernetes.namespace
- kubernetes.service.name
- kubernetes.service.uid
- kubernetes.annotations
If the include_annotations
config is added to the provider config, then the list of annotations present in the config
are added to the event.
If the include_labels
config is added to the provider config, then the list of labels present in the config
will be added to the event.
If the exclude_labels
config is added to the provider config, then the list of labels present in the config
will be excluded from the event.
if the labels.dedot
config is set to be true
in the provider config, then .
in labels will be replaced with _
.
if the annotations.dedot
config is set to be true
in the provider config, then .
in annotations will be replaced
with _
.
For example:
{ "host": "172.17.0.21", "port": 9090, "kubernetes": { "container": { "id": "bb3a50625c01b16a88aa224779c39262a9ad14264c3034669a50cd9a90af1527", "image": "prom/prometheus", "name": "prometheus" }, "labels": { "project": "prometheus", ... }, "namespace": "default", "node": { "name": "minikube" }, "pod": { "name": "prometheus-2657348378-k1pnh" } }, }
The configuration of templates and conditions is similar to that of the Docker provider. Configuration templates can contain variables from the autodiscover event. They can be accessed under data namespace.
The kubernetes
autodiscover provider has the following configuration settings:
-
node
- (Optional) Specify the node to scope heartbeat to in case it cannot be accurately detected, as when running heartbeat in host network mode.
-
namespace
- (Optional) Select the namespace from which to collect the metadata. If it is not set, the processor collects metadata from all namespaces. It is unset by default. The namespace configuration only applies to kubernetes resources that are namespace scoped.
-
cleanup_timeout
- (Optional) Specify the time of inactivity before stopping the running configuration for a container, 60s by default.
-
kube_config
- (Optional) Use given config file as configuration for Kubernetes client. If kube_config is not set, KUBECONFIG environment variable will be checked and if not present it will fall back to InCluster.
-
resource
-
(Optional) Select the resource to do discovery on. Currently supported
Kubernetes resources are
pod
,service
andnode
. If not configuredresource
defaults topod
. -
scope
-
(Optional) Specify at what level autodiscover needs to be done at.
scope
can either takenode
orcluster
as values.node
scope allows discovery of resources in the specified node.cluster
scope allows cluster wide discovery. Onlypod
andnode
resources can be discovered at node scope. -
add_resource_metadata
-
(Optional) Specify resources against which additional enrichment needs to be done one.
add_resource_metadata
can be done fornode
ornamespace
. Example:
add_resource_metadata: namespace: enabled: true include_labels: ["namespacelabel1"] node: enabled: true include_labels: ["nodelabel2"]
Heartbeat supports templates for modules:
heartbeat.autodiscover: providers: - type: kubernetes include_annotations: ["prometheus.io.scrape"] templates: - condition: contains: kubernetes.annotations.prometheus.io/scrape: "true" config: - type: http hosts: ["${data.host}:${data.port}"] schedule: "@every 1s" timeout: 1s
This configuration launches an http
module for all containers of pods annotated with prometheus.io/scrape=true
.
Manually Defining Ports with Kubernetes
editDeclare exposed ports in your pod spec if possible. Otherwise, you will need to use
multiple templates with complex filtering rules. The {port} variable will not be
present, and you will need to hardcode ports. Example: {data.host}:1234
When ports are not declared, Autodiscover generates a config using your provided template once per pod, and once per container. These generated configs are de-duplicated after they are generated. If the generated configs for multiple containers are identical, they will be merged into one config.
Pods share an identical host. If only the {data.host}
variable is interpolated,
then one config will be generated per host. The configs will be identical.
After they are de-duplicated, only one will be used.
Amazon ELBs
editNote: This provider is experimental
The Amazon ELB autodiscover provider discovers ELBs and their listeners. This is useful when you don’t want to connect directly to a service, but rather to the ELB fronting a pool of services.
This provider will yield one config block per ELB Listener. So, if you have one ELB exposing both ports 80 and 443, it will generate two configs, one for each port. Keep in mind that the beat will de-duplicate configs. So, if the generated configs are the same only one will actually run.
This provider will load AWS credentials using the standard AWS environment variables and shared credentials files see Best Practices for Managing AWS Access Keys for more information. If you do not wish to use these, you may explicitly set the access_key_id
and secret_access_key
variables.
These are the available fields during within config templating. The aws.elb.*
fields will be available on each emitted event.
- host
- port
- cloud.availability_zone
- cloud.provider
- cloud.region
- aws.elb.listener_arn
- aws.elb.load_balancer_arn
- aws.elb.protocol
- aws.elb.type
- aws.elb.scheme
- aws.elb.availability_zones
- aws.elb.created
- aws.elb.state.code
- aws.elb.state.reason
- aws.elb.ip_address_type
- aws.elb.security_groups
- aws.elb.vpc_id
- aws.elb.ssl_policy
Heartbeat supports templates for modules:
heartbeat.autodiscover: providers: - type: aws_elb period: 1m regions: ["us-east-1", "us-east-2"] access_key_id: my-access-key secret_access_key: my-secret-access-key templates: - condition: equals.port: 8080 config: - type: tcp hosts: ["${data.host}:${data.port}"] schedule: "@every 5s" timeout: 1s
This configuration launches a tcp
monitor for all ELBs that have a declared port.
This autodiscover provider takes our standard AWS credentials options.
AWS Credentials Configuration
editTo configure AWS credentials, either put the credentials into the Heartbeat configuration, or use a shared credentials file, as shown in the following examples.
Configuration parameters
edit- access_key_id: first part of access key.
- secret_access_key: second part of access key.
- session_token: required when using temporary security credentials.
- credential_profile_name: profile name in shared credentials file.
- shared_credential_file: directory of the shared credentials file.
- endpoint: URL of the entry point for an AWS web service.
Supported Formats
edit-
Use
AWS_ACCESS_KEY_ID
,AWS_SECRET_ACCESS_KEY
and/orAWS_SESSION_TOKEN
Users can either put the credentials into metricbeat module configuration or use
environment variable AWS_ACCESS_KEY_ID
, AWS_SECRET_ACCESS_KEY
and/or
AWS_SESSION_TOKEN
instead.
heartbeat.autodiscover: providers: - type: aws_elb period: 1m regions: ["us-east-1", "us-east-2"] access_key_id: '<access_key_id>' secret_access_key: '<secret_access_key>' session_token: '<session_token>' templates: - type: tcp hosts: ["${data.host}:${data.port}"] schedule: "@every 5s" timeout: 1s
or
heartbeat.autodiscover: providers: - type: aws_elb period: 1m regions: ["us-east-1", "us-east-2"] access_key_id: '${AWS_ACCESS_KEY_ID:""}' secret_access_key: '${AWS_SECRET_ACCESS_KEY:""}' session_token: '${AWS_SESSION_TOKEN:""}' templates: - type: tcp hosts: ["${data.host}:${data.port}"] schedule: "@every 5s" timeout: 1s
- Use shared AWS credentials file
heartbeat.autodiscover: providers: - type: aws_elb period: 1m regions: ["us-east-1", "us-east-2"] credential_profile_name: test-hb templates: - type: tcp hosts: ["${data.host}:${data.port}"] schedule: "@every 5s" timeout: 1s
credential_profile_name
is optional. If you use different credentials for
different tools or applications, you can use profiles to configure multiple
access keys in the same configuration file. If there is no credential_profile_name
given, the default profile will be used.
shared_credential_file
is optional to specify the directory of your shared
credentials file. If it’s empty, the default directory will be used.
In Windows, shared credentials file is at C:\Users\<yourUserName>\.aws\credentials
.
For Linux, macOS or Unix, the file is located at ~/.aws/credentials
. Please see
Create Shared Credentials File
for more details.
AWS Credentials Types
editThere are two different types of AWS credentials can be used: access keys and temporary security credentials.
- Access keys
AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY
are the two parts of access keys.
They are long-term credentials for an IAM user or the AWS account root user.
Please see
AWS Access Keys
and Secret Access Keys
for more details.
- Temporary security credentials
temporary security credentials has a limited lifetime and consists of an
access key ID, a secret access key, and a security token which typically returned
from GetSessionToken
. MFA-enabled IAM users would need to submit an MFA code
while calling GetSessionToken
. default_region
identifies the AWS Region
whose servers you want to send your first API request to by default. This is
typically the Region closest to you, but it can be any Region. Please see
Temporary Security Credentials
for more details.
sts get-session-token
AWS CLI can be used to generate temporary credentials. For example. with MFA-enabled:
aws> sts get-session-token --serial-number arn:aws:iam::1234:mfa/your-email@example.com --token-code 456789 --duration-seconds 129600
Because temporary security credentials are short term, after they expire, the user needs to generate new ones and modify the aws.yml config file with the new credentials. Unless live reloading feature is enabled for Metricbeat, the user needs to manually restart Metricbeat after updating the config file in order to continue collecting Cloudwatch metrics. This will cause data loss if the config file is not updated with new credentials before the old ones expire. For Metricbeat, we recommend users to use access keys in config file to enable aws module making AWS api calls without have to generate new temporary credentials and update the config frequently.
IAM policy is an entity that defines permissions to an object within your AWS environment. Specific permissions needs to be added into the IAM user’s policy to authorize Metricbeat to collect AWS monitoring metrics. Please see documentation under each metricset for required permissions.