- Elasticsearch Guide: other versions:
- Getting Started
- Setup Elasticsearch
- Breaking changes
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Compound Word Token Filter
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
WARNING: Version 5.1 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Disk-based Shard Allocation
editDisk-based Shard Allocation
editElasticsearch factors in the available disk space on a node before deciding whether to allocate new shards to that node or to actively relocate shards away from that node.
Below are the settings that can be configured in the elasticsearch.yml
config
file or updated dynamically on a live cluster with the
cluster-update-settings API:
-
cluster.routing.allocation.disk.threshold_enabled
-
Defaults to
true
. Set tofalse
to disable the disk allocation decider. -
cluster.routing.allocation.disk.watermark.low
- Controls the low watermark for disk usage. It defaults to 85%, meaning ES will not allocate new shards to nodes once they have more than 85% disk used. It can also be set to an absolute byte value (like 500mb) to prevent ES from allocating shards if less than the configured amount of space is available.
-
cluster.routing.allocation.disk.watermark.high
- Controls the high watermark. It defaults to 90%, meaning ES will attempt to relocate shards to another node if the node disk usage rises above 90%. It can also be set to an absolute byte value (similar to the low watermark) to relocate shards once less than the configured amount of space is available on the node.
Percentage values refer to used disk space, while byte values refer to free disk space. This can be confusing, since it flips the meaning of high and low. For example, it makes sense to set the low watermark to 10gb and the high watermark to 5gb, but not the other way around.
-
cluster.info.update.interval
-
How often Elasticsearch should check on disk usage for each node in the
cluster. Defaults to
30s
. -
cluster.routing.allocation.disk.include_relocations
-
Defaults to
true
, which means that Elasticsearch will take into account shards that are currently being relocated to the target node when computing a node’s disk usage. Taking relocating shards' sizes into account may, however, mean that the disk usage for a node is incorrectly estimated on the high side, since the relocation could be 90% complete and a recently retrieved disk usage would include the total size of the relocating shard as well as the space already used by the running relocation.
An example of updating the low watermark to no more than 80% of the disk size, a high watermark of at least 50 gigabytes free, and updating the information about the cluster every minute:
PUT _cluster/settings { "transient": { "cluster.routing.allocation.disk.watermark.low": "80%", "cluster.routing.allocation.disk.watermark.high": "50gb", "cluster.info.update.interval": "1m" } }
Prior to 2.0.0, when using multiple data paths, the disk threshold decider only factored in the usage across all data paths (if you had two data paths, one with 50b out of 100b free (50% used) and another with 40b out of 50b free (80% used) it would see the node’s disk usage as 90b out of 150b). In 2.0.0, the minimum and maximum disk usages are tracked separately.