NOTE: You are looking at documentation for an older release. For the latest information, see the current release documentation.
Split Index
editSplit Index
editThe split index API allows you to split an existing index into a new index, where each original primary shard is split into two or more primary shards in the new index.
The _split
API requires the source index to be created with a
specific number_of_routing_shards
in order to be split in the future. This
requirement has been removed in Elasticsearch 7.0.
The number of times the index can be split (and the number of shards that each
original shard can be split into) is determined by the
index.number_of_routing_shards
setting. The number of routing shards
specifies the hashing space that is used internally to distribute documents
across shards with consistent hashing. For instance, a 5 shard index with
number_of_routing_shards
set to 30
(5 x 2 x 3
) could be split by a
factor of 2
or 3
. In other words, it could be split as follows:
-
5
→10
→30
(split by 2, then by 3) -
5
→15
→30
(split by 3, then by 2) -
5
→30
(split by 6)
How does splitting work?
editSplitting works as follows:
- First, it creates a new target index with the same definition as the source index, but with a larger number of primary shards.
- Then it hard-links segments from the source index into the target index. (If the file system doesn’t support hard-linking, then all segments are copied into the new index, which is a much more time consuming process.)
-
Once the low level files are created all documents will be
hashed
again to delete documents that belong to a different shard. - Finally, it recovers the target index as though it were a closed index which had just been re-opened.
Why doesn’t Elasticsearch support incremental resharding?
editGoing from N
shards to N+1
shards, aka. incremental resharding, is indeed a
feature that is supported by many key-value stores. Adding a new shard and
pushing new data to this new shard only is not an option: this would likely be
an indexing bottleneck, and figuring out which shard a document belongs to
given its _id
, which is necessary for get, delete and update requests, would
become quite complex. This means that we need to rebalance existing data using
a different hashing scheme.
The most common way that key-value stores do this efficiently is by using
consistent hashing. Consistent hashing only requires 1/N
-th of the keys to
be relocated when growing the number of shards from N
to N+1
. However
Elasticsearch’s unit of storage, shards, are Lucene indices. Because of their
search-oriented data structure, taking a significant portion of a Lucene index,
be it only 5% of documents, deleting them and indexing them on another shard
typically comes with a much higher cost than with a key-value store. This cost
is kept reasonable when growing the number of shards by a multiplicative factor
as described in the above section: this allows Elasticsearch to perform the
split locally, which in-turn allows to perform the split at the index level
rather than reindexing documents that need to move, as well as using hard links
for efficient file copying.
In the case of append-only data, it is possible to get more flexibility by
creating a new index and pushing new data to it, while adding an alias that
covers both the old and the new index for read operations. Assuming that the
old and new indices have respectively M
and N
shards, this has no overhead
compared to searching an index that would have M+N
shards.
Preparing an index for splitting
editCreate an index with a routing shards factor:
PUT my_source_index { "settings": { "index.number_of_shards" : 1, "index.number_of_routing_shards" : 2 } }
Allows to split the index into two shards or in other words, it allows for a single split operation. |
In order to split an index, the index must be marked as read-only,
and have health green
.
This can be achieved with the following request:
Prevents write operations to this index while still allowing metadata changes like deleting the index. |
Splitting an index
editTo split my_source_index
into a new index called my_target_index
, issue
the following request:
POST my_source_index/_split/my_target_index?copy_settings=true { "settings": { "index.number_of_shards": 2 } }
The above request returns immediately once the target index has been added to the cluster state — it doesn’t wait for the split operation to start.
Indices can only be split if they satisfy the following requirements:
- the target index must not exist
- The index must have less primary shards than the target index.
- The number of primary shards in the target index must be a multiple of the number of primary shards in the source index.
- The node handling the split process must have sufficient free disk space to accommodate a second copy of the existing index.
The _split
API is similar to the create index
API
and accepts settings
and aliases
parameters for the target index:
POST my_source_index/_split/my_target_index?copy_settings=true { "settings": { "index.number_of_shards": 5 }, "aliases": { "my_search_indices": {} } }
The number of shards in the target index. This must be a multiple of the number of shards in the source index. |
Mappings may not be specified in the _split
request.
By default, with the exception of index.analysis
, index.similarity
,
and index.sort
settings, index settings on the source index are not copied
during a split operation. With the exception of non-copyable settings, settings
from the source index can be copied to the target index by adding the URL
parameter copy_settings=true
to the request. Note that copy_settings
can not
be set to false
. The parameter copy_settings
will be removed in 8.0.0
[6.4.0] Deprecated in 6.4.0. not copying settings is deprecated, copying settings will be the default behavior in 7.x
Monitoring the split process
editThe split process can be monitored with the _cat recovery
API, or the cluster health
API can be used to wait
until all primary shards have been allocated by setting the wait_for_status
parameter to yellow
.
The _split
API returns as soon as the target index has been added to the
cluster state, before any shards have been allocated. At this point, all
shards are in the state unassigned
. If, for any reason, the target index
can’t be allocated, its primary shard will remain unassigned
until it
can be allocated on that node.
Once the primary shard is allocated, it moves to state initializing
, and the
split process begins. When the split operation completes, the shard will
become active
. At that point, Elasticsearch will try to allocate any
replicas and may decide to relocate the primary shard to another node.
Wait For Active Shards
editBecause the split operation creates a new index to split the shards to, the wait for active shards setting on index creation applies to the split index action as well.