- Elasticsearch Guide: other versions:
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Data stream lifecycle settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Inference settings
- Monitoring settings
- Nodes
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard allocation, relocation, and recovery
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Search your data
- The search API
- Sort search results
- Paginate search results
- Retrieve selected fields
- Search multiple data streams and indices
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Retrieve inner hits
- Search shard routing
- Searching with query rules
- Search templates
- Retrievers
- kNN search
- Semantic search
- Search across clusters
- Search with synonyms
- Search Applications
- Search analytics
- The search API
- Re-ranking
- Index modules
- Index templates
- Aliases
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Data streams
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Roll up or transform your data
- Query DSL
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Watcher
- Monitor a cluster
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Set up a cluster for high availability
- How to
- Autoscaling
- Snapshot and restore
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Create inference API
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- Mistral inference service
- OpenAI inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Upgrade Elasticsearch
- Migration guide
- What’s new in 8.15
- Release notes
- Elasticsearch version 8.15.5
- Elasticsearch version 8.15.4
- Elasticsearch version 8.15.3
- Elasticsearch version 8.15.2
- Elasticsearch version 8.15.1
- Elasticsearch version 8.15.0
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Troubleshooting searches
editTroubleshooting searches
editWhen you query your data, Elasticsearch may return an error, no search results, or results in an unexpected order. This guide describes how to troubleshoot searches.
Ensure the data stream, index, or alias exists
editElasticsearch returns an index_not_found_exception
when the data stream, index
or alias you try to query does not exist. This can happen when you misspell the
name or when the data has been indexed to a different data stream or index.
Use the exists API to check whether a data stream, index, or alias exists:
resp = client.indices.exists( index="my-data-stream", ) print(resp)
response = client.indices.exists( index: 'my-data-stream' ) puts response
const response = await client.indices.exists({ index: "my-data-stream", }); console.log(response);
HEAD my-data-stream
Use the data stream stats API to list all data streams:
resp = client.indices.data_streams_stats( human=True, ) print(resp)
response = client.indices.data_streams_stats( human: true ) puts response
const response = await client.indices.dataStreamsStats({ human: "true", }); console.log(response);
GET /_data_stream/_stats?human=true
Use the get index API to list all indices and their aliases:
resp = client.indices.get( index="_all", filter_path="*.aliases", ) print(resp)
response = client.indices.get( index: '_all', filter_path: '*.aliases' ) puts response
const response = await client.indices.get({ index: "_all", filter_path: "*.aliases", }); console.log(response);
GET _all?filter_path=*.aliases
Instead of an error, it is possible to retrieve partial search results if some
of the indices you’re querying are unavailable. Set ignore_unavailable
to
true
:
resp = client.search( index="my-alias", ignore_unavailable=True, ) print(resp)
response = client.search( index: 'my-alias', ignore_unavailable: true ) puts response
const response = await client.search({ index: "my-alias", ignore_unavailable: "true", }); console.log(response);
GET /my-alias/_search?ignore_unavailable=true
Ensure the data stream or index contains data
editWhen a search request returns no hits, the data stream or index may contain no data. This can happen when there is a data ingestion issue. For example, the data may have been indexed to a data stream or index with another name.
Use the count API to retrieve the number of documents in a data
stream or index. Check that count
in the response is not 0.
resp = client.count( index="my-index-000001", ) print(resp)
response = client.count( index: 'my-index-000001' ) puts response
const response = await client.count({ index: "my-index-000001", }); console.log(response);
GET /my-index-000001/_count
When getting no search results in Kibana, check that you have selected the correct data view and a valid time range. Also, ensure the data view has been configured with the correct time field.
Check that the field exists and its capabilities
editQuerying a field that does not exist will not return any results. Use the field capabilities API to check whether a field exists:
resp = client.field_caps( index="my-index-000001", fields="my-field", ) print(resp)
response = client.field_caps( index: 'my-index-000001', fields: 'my-field' ) puts response
const response = await client.fieldCaps({ index: "my-index-000001", fields: "my-field", }); console.log(response);
GET /my-index-000001/_field_caps?fields=my-field
If the field does not exist, check the data ingestion process. The field may have a different name.
If the field exists, the request will return the field’s type and whether it is searchable and aggregatable.
{ "indices": [ "my-index-000001" ], "fields": { "my-field": { "keyword": { "type": "keyword", "metadata_field": false, "searchable": true, "aggregatable": true } } } }
The field is of type |
|
The field is searchable in this index. |
|
The field is aggregatable in this index. |
Check the field’s mappings
editA field’s capabilities are determined by its mapping. To retrieve the mapping, use the get mapping API:
resp = client.indices.get_mapping( index="my-index-000001", ) print(resp)
response = client.indices.get_mapping( index: 'my-index-000001' ) puts response
const response = await client.indices.getMapping({ index: "my-index-000001", }); console.log(response);
GET /my-index-000001/_mappings
If you query a text
field, pay attention to the analyzer that may have been
configured. You can use the analyze API to check how a
field’s analyzer processes values and query terms:
resp = client.indices.analyze( index="my-index-000001", field="my-field", text="this is a test", ) print(resp)
response = client.indices.analyze( index: 'my-index-000001', body: { field: 'my-field', text: 'this is a test' } ) puts response
const response = await client.indices.analyze({ index: "my-index-000001", field: "my-field", text: "this is a test", }); console.log(response);
GET /my-index-000001/_analyze { "field" : "my-field", "text" : "this is a test" }
To change the mapping of an existing field, refer to Changing the mapping of a field.
Check the field’s values
editUse the exists
query to check whether there are
documents that return a value for a field. Check that count
in the response is
not 0.
resp = client.count( index="my-index-000001", query={ "exists": { "field": "my-field" } }, ) print(resp)
response = client.count( index: 'my-index-000001', body: { query: { exists: { field: 'my-field' } } } ) puts response
const response = await client.count({ index: "my-index-000001", query: { exists: { field: "my-field", }, }, }); console.log(response);
GET /my-index-000001/_count { "query": { "exists": { "field": "my-field" } } }
If the field is aggregatable, you can use aggregations
to check the field’s values. For keyword
fields, you can use a
terms aggregation to retrieve
the field’s most common values:
resp = client.search( index="my-index-000001", filter_path="aggregations", size=0, aggs={ "top_values": { "terms": { "field": "my-field", "size": 10 } } }, ) print(resp)
response = client.search( index: 'my-index-000001', filter_path: 'aggregations', body: { size: 0, aggregations: { top_values: { terms: { field: 'my-field', size: 10 } } } } ) puts response
const response = await client.search({ index: "my-index-000001", filter_path: "aggregations", size: 0, aggs: { top_values: { terms: { field: "my-field", size: 10, }, }, }, }); console.log(response);
GET /my-index-000001/_search?filter_path=aggregations { "size": 0, "aggs": { "top_values": { "terms": { "field": "my-field", "size": 10 } } } }
For numeric fields, you can use the stats aggregation to get an idea of the field’s value distribution:
resp = client.search( index="my-index-000001", filter_path="aggregations", aggs={ "my-num-field-stats": { "stats": { "field": "my-num-field" } } }, ) print(resp)
response = client.search( index: 'my-index-000001', filter_path: 'aggregations', body: { aggregations: { "my-num-field-stats": { stats: { field: 'my-num-field' } } } } ) puts response
const response = await client.search({ index: "my-index-000001", filter_path: "aggregations", aggs: { "my-num-field-stats": { stats: { field: "my-num-field", }, }, }, }); console.log(response);
GET my-index-000001/_search?filter_path=aggregations { "aggs": { "my-num-field-stats": { "stats": { "field": "my-num-field" } } } }
If the field does not return any values, check the data ingestion process. The field may have a different name.
Check the latest value
editFor time-series data, confirm there is non-filtered data within the attempted
time range. For example, if you are trying to query the latest data for the
@timestamp
field, run the following to see if the max @timestamp
falls
within the attempted range:
resp = client.search( index="my-index-000001", sort="@timestamp:desc", size="1", ) print(resp)
response = client.search( index: 'my-index-000001', sort: '@timestamp:desc', size: 1 ) puts response
const response = await client.search({ index: "my-index-000001", sort: "@timestamp:desc", size: 1, }); console.log(response);
GET my-index-000001/_search?sort=@timestamp:desc&size=1
Validate, explain, and profile queries
editWhen a query returns unexpected results, Elasticsearch offers several tools to investigate why.
The validate API enables you to validate a query. Use the
rewrite
parameter to return the Lucene query an Elasticsearch query is
rewritten into:
resp = client.indices.validate_query( index="my-index-000001", rewrite=True, query={ "match": { "user.id": { "query": "kimchy", "fuzziness": "auto" } } }, ) print(resp)
response = client.indices.validate_query( index: 'my-index-000001', rewrite: true, body: { query: { match: { 'user.id' => { query: 'kimchy', fuzziness: 'auto' } } } } ) puts response
const response = await client.indices.validateQuery({ index: "my-index-000001", rewrite: "true", query: { match: { "user.id": { query: "kimchy", fuzziness: "auto", }, }, }, }); console.log(response);
GET /my-index-000001/_validate/query?rewrite=true { "query": { "match": { "user.id": { "query": "kimchy", "fuzziness": "auto" } } } }
Use the explain API to find out why a specific document matches or doesn’t match a query:
resp = client.explain( index="my-index-000001", id="0", query={ "match": { "message": "elasticsearch" } }, ) print(resp)
response = client.explain( index: 'my-index-000001', id: 0, body: { query: { match: { message: 'elasticsearch' } } } ) puts response
const response = await client.explain({ index: "my-index-000001", id: 0, query: { match: { message: "elasticsearch", }, }, }); console.log(response);
GET /my-index-000001/_explain/0 { "query" : { "match" : { "message" : "elasticsearch" } } }
The profile API provides detailed timing information about a search request. For a visual representation of the results, use the Search Profiler in Kibana.
To troubleshoot queries in Kibana, select Inspect in the toolbar. Next, select Request. You can now copy the query Kibana sent to Elasticsearch for further analysis in Console.
Check index settings
editIndex settings can influence search results. For
example, the index.query.default_field
setting, which determines the field
that is queried when a query specifies no explicit field. Use the
get index settings API to retrieve the settings for an
index:
resp = client.indices.get_settings( index="my-index-000001", ) print(resp)
response = client.indices.get_settings( index: 'my-index-000001' ) puts response
const response = await client.indices.getSettings({ index: "my-index-000001", }); console.log(response);
GET /my-index-000001/_settings
You can update dynamic index settings with the update index settings API. Changing dynamic index settings for a data stream requires changing the index template used by the data stream.
For static settings, you need to create a new index with the correct settings. Next, you can reindex the data into that index. For data streams, refer to Change a static index setting for a data stream.
Find slow queries
editSlow logs can help pinpoint slow performing search
requests. Enabling audit logging on top can help determine
query source. Add the following settings to the elasticsearch.yml
configuration file
to trace queries. The resulting logging is verbose, so disable these settings when not
troubleshooting.
xpack.security.audit.enabled: true xpack.security.audit.logfile.events.include: _all xpack.security.audit.logfile.events.emit_request_body: true
Refer to Advanced tuning: finding and fixing slow Elasticsearch queries for more information.
On this page
ElasticON events are back!
Learn about the Elastic Search AI Platform from the experts at our live events.
Register now