Analyze eCommerce data with aggregations using Query DSL
editAnalyze eCommerce data with aggregations using Query DSL
editThis hands-on tutorial shows you how to analyze eCommerce data using Elasticsearch aggregations with the _search
API and Query DSL.
You’ll learn how to:
- Calculate key business metrics such as average order value
- Analyze sales patterns over time
- Compare performance across product categories
- Track moving averages and cumulative totals
Requirements
editYou’ll need:
-
A running instance of Elasticsearch, either on Elastic Cloud Serverless or together with Kibana on Elastic Cloud Hosted/Self Managed deployments.
-
If you don’t have a deployment, you can run the following command in your terminal to set up a local dev environment:
curl -fsSL https://elastic.co/start-local | sh
-
-
The sample eCommerce data loaded into Elasticsearch. To load sample data follow these steps in your UI:
- Open the Integrations pages by searching in the global search field.
-
Search for
sample data
in the Integrations search field. - Open the Sample data page.
- Select the Other sample data sets collapsible.
-
Add the Sample eCommerce orders data set.
This will create and populate an index called
kibana_sample_data_ecommerce
.
Inspect index structure
editBefore we start analyzing the data, let’s examine the structure of the documents in our sample eCommerce index. Run this command to see the field mappings:
GET kibana_sample_data_ecommerce/_mapping
The response shows the field mappings for the kibana_sample_data_ecommerce
index.
Example response
{ "kibana_sample_data_ecommerce": { "mappings": { "properties": { "category": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "currency": { "type": "keyword" }, "customer_birth_date": { "type": "date" }, "customer_first_name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "customer_full_name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "customer_gender": { "type": "keyword" }, "customer_id": { "type": "keyword" }, "customer_last_name": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "customer_phone": { "type": "keyword" }, "day_of_week": { "type": "keyword" }, "day_of_week_i": { "type": "integer" }, "email": { "type": "keyword" }, "event": { "properties": { "dataset": { "type": "keyword" } } }, "geoip": { "properties": { "city_name": { "type": "keyword" }, "continent_name": { "type": "keyword" }, "country_iso_code": { "type": "keyword" }, "location": { "type": "geo_point" }, "region_name": { "type": "keyword" } } }, "manufacturer": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "order_date": { "type": "date" }, "order_id": { "type": "keyword" }, "products": { "properties": { "_id": { "type": "text", "fields": { "keyword": { "type": "keyword", "ignore_above": 256 } } }, "base_price": { "type": "half_float" }, "base_unit_price": { "type": "half_float" }, "category": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "created_on": { "type": "date" }, "discount_amount": { "type": "half_float" }, "discount_percentage": { "type": "half_float" }, "manufacturer": { "type": "text", "fields": { "keyword": { "type": "keyword" } } }, "min_price": { "type": "half_float" }, "price": { "type": "half_float" }, "product_id": { "type": "long" }, "product_name": { "type": "text", "fields": { "keyword": { "type": "keyword" } }, "analyzer": "english" }, "quantity": { "type": "integer" }, "sku": { "type": "keyword" }, "tax_amount": { "type": "half_float" }, "taxful_price": { "type": "half_float" }, "taxless_price": { "type": "half_float" }, "unit_discount_amount": { "type": "half_float" } } }, "sku": { "type": "keyword" }, "taxful_total_price": { "type": "half_float" }, "taxless_total_price": { "type": "half_float" }, "total_quantity": { "type": "integer" }, "total_unique_products": { "type": "integer" }, "type": { "type": "keyword" }, "user": { "type": "keyword" } } } } }
|
|
|
|
|
|
|
The sample data includes the following field data types:
-
text
andkeyword
for text fields-
Most
text
fields have a.keyword
subfield for exact matching using multi-fields
-
Most
-
date
for date fields -
3 numeric types:
-
integer
for whole numbers -
long
for large whole numbers -
half_float
for floating-point numbers
-
-
geo_point
for geographic coordinates -
object
for nested structures such asproducts
,geoip
,event
Now that we understand the structure of our sample data, let’s start analyzing it.
Get key business metrics
editLet’s start by calculating important metrics about orders and customers.
Get average order size
editCalculate the average order value across all orders in the dataset using the avg
aggregation.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "avg_order_value": { "avg": { "field": "taxful_total_price" } } } }
Set |
|
A meaningful name that describes what this metric represents |
|
Configures an |
Example response
Get multiple order statistics at once
editCalculate multiple statistics about orders in one request using the stats
aggregation.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "order_stats": { "stats": { "field": "taxful_total_price" } } } }
Example response
The stats aggregation is more efficient than running individual min, max, avg, and sum aggregations.
Analyze sales patterns
editLet’s group orders in different ways to understand sales patterns.
Break down sales by category
editGroup orders by category to see which product categories are most popular, using the terms
aggregation.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "sales_by_category": { "terms": { "field": "category.keyword", "size": 5, "order": { "_count": "desc" } } } } }
Name reflecting the business purpose of this breakdown |
|
|
|
Use |
|
Limit to top 5 categories |
|
Order by number of orders (descending) |
Example response
{ "took": 4, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 4675, "relation": "eq" }, "max_score": null, "hits": [] }, "aggregations": { "sales_by_category": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 572, "buckets": [ { "key": "Men's Clothing", "doc_count": 2024 }, { "key": "Women's Clothing", "doc_count": 1903 }, { "key": "Women's Shoes", "doc_count": 1136 }, { "key": "Men's Shoes", "doc_count": 944 }, { "key": "Women's Accessories", "doc_count": 830 } ] } } }
Due to Elasticsearch’s distributed architecture, when terms aggregations run across multiple shards, the doc counts may have a small margin of error. This value indicates the maximum possible error in the counts. |
|
Count of documents in categories beyond the requested size. |
|
Array of category buckets, ordered by count. |
|
Category name. |
|
Number of orders in this category. |
Track daily sales patterns
editGroup orders by day to track daily sales patterns using the date_histogram
aggregation.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "daily_orders": { "date_histogram": { "field": "order_date", "calendar_interval": "day", "format": "yyyy-MM-dd", "min_doc_count": 0 } } } }
Descriptive name for the time-series aggregation results. |
|
The |
|
Uses calendar and fixed time intervals to handle months with different lengths. |
|
Formats dates in response using date patterns (e.g. "yyyy-MM-dd"). Refer to date math expressions for additional options. |
|
When |
Example response
{ "took": 2, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 4675, "relation": "eq" }, "max_score": null, "hits": [] }, "aggregations": { "daily_orders": { "buckets": [ { "key_as_string": "2024-11-28", "key": 1732752000000, "doc_count": 146 }, { "key_as_string": "2024-11-29", "key": 1732838400000, "doc_count": 153 }, { "key_as_string": "2024-11-30", "key": 1732924800000, "doc_count": 143 }, { "key_as_string": "2024-12-01", "key": 1733011200000, "doc_count": 140 }, { "key_as_string": "2024-12-02", "key": 1733097600000, "doc_count": 139 }, { "key_as_string": "2024-12-03", "key": 1733184000000, "doc_count": 157 }, { "key_as_string": "2024-12-04", "key": 1733270400000, "doc_count": 145 }, { "key_as_string": "2024-12-05", "key": 1733356800000, "doc_count": 152 }, { "key_as_string": "2024-12-06", "key": 1733443200000, "doc_count": 163 }, { "key_as_string": "2024-12-07", "key": 1733529600000, "doc_count": 141 }, { "key_as_string": "2024-12-08", "key": 1733616000000, "doc_count": 151 }, { "key_as_string": "2024-12-09", "key": 1733702400000, "doc_count": 143 }, { "key_as_string": "2024-12-10", "key": 1733788800000, "doc_count": 143 }, { "key_as_string": "2024-12-11", "key": 1733875200000, "doc_count": 142 }, { "key_as_string": "2024-12-12", "key": 1733961600000, "doc_count": 161 }, { "key_as_string": "2024-12-13", "key": 1734048000000, "doc_count": 144 }, { "key_as_string": "2024-12-14", "key": 1734134400000, "doc_count": 157 }, { "key_as_string": "2024-12-15", "key": 1734220800000, "doc_count": 158 }, { "key_as_string": "2024-12-16", "key": 1734307200000, "doc_count": 144 }, { "key_as_string": "2024-12-17", "key": 1734393600000, "doc_count": 151 }, { "key_as_string": "2024-12-18", "key": 1734480000000, "doc_count": 145 }, { "key_as_string": "2024-12-19", "key": 1734566400000, "doc_count": 157 }, { "key_as_string": "2024-12-20", "key": 1734652800000, "doc_count": 158 }, { "key_as_string": "2024-12-21", "key": 1734739200000, "doc_count": 153 }, { "key_as_string": "2024-12-22", "key": 1734825600000, "doc_count": 165 }, { "key_as_string": "2024-12-23", "key": 1734912000000, "doc_count": 153 }, { "key_as_string": "2024-12-24", "key": 1734998400000, "doc_count": 158 }, { "key_as_string": "2024-12-25", "key": 1735084800000, "doc_count": 160 }, { "key_as_string": "2024-12-26", "key": 1735171200000, "doc_count": 159 }, { "key_as_string": "2024-12-27", "key": 1735257600000, "doc_count": 152 }, { "key_as_string": "2024-12-28", "key": 1735344000000, "doc_count": 142 } ] } } }
Combine metrics with groupings
editNow let’s calculate metrics within each group to get deeper insights.
Compare category performance
editCalculate metrics within each category to compare performance across categories.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "categories": { "terms": { "field": "category.keyword", "size": 5, "order": { "total_revenue": "desc" } }, "aggs": { "total_revenue": { "sum": { "field": "taxful_total_price" } }, "avg_order_value": { "avg": { "field": "taxful_total_price" } }, "total_items": { "sum": { "field": "total_quantity" } } } } } }
Order categories by their total revenue instead of count |
|
Define metrics to calculate within each category |
|
Total revenue for the category |
|
Average order value in the category |
|
Total number of items sold |
Example response
Analyze daily sales performance
editLet’s combine metrics to track daily trends: daily revenue, unique customers, and average basket size.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "daily_sales": { "date_histogram": { "field": "order_date", "calendar_interval": "day", "format": "yyyy-MM-dd" }, "aggs": { "revenue": { "sum": { "field": "taxful_total_price" } }, "unique_customers": { "cardinality": { "field": "customer_id" } }, "avg_basket_size": { "avg": { "field": "total_quantity" } } } } } }
Daily revenue |
|
Uses the |
|
Average number of items per order |
Example response
{ "took": 119, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 4675, "relation": "eq" }, "max_score": null, "hits": [] }, "aggregations": { "daily_sales": { "buckets": [ { "key_as_string": "2024-11-14", "key": 1731542400000, "doc_count": 146, "unique_customers": { "value": 42 }, "revenue": { "value": 10578.53125 }, "avg_basket_size": { "value": 2.1780821917808217 } }, { "key_as_string": "2024-11-15", "key": 1731628800000, "doc_count": 153, "unique_customers": { "value": 44 }, "revenue": { "value": 10448 }, "avg_basket_size": { "value": 2.183006535947712 } }, { "key_as_string": "2024-11-16", "key": 1731715200000, "doc_count": 143, "unique_customers": { "value": 45 }, "revenue": { "value": 10283.484375 }, "avg_basket_size": { "value": 2.111888111888112 } }, { "key_as_string": "2024-11-17", "key": 1731801600000, "doc_count": 140, "unique_customers": { "value": 42 }, "revenue": { "value": 10145.5234375 }, "avg_basket_size": { "value": 2.142857142857143 } }, { "key_as_string": "2024-11-18", "key": 1731888000000, "doc_count": 139, "unique_customers": { "value": 42 }, "revenue": { "value": 12012.609375 }, "avg_basket_size": { "value": 2.158273381294964 } }, { "key_as_string": "2024-11-19", "key": 1731974400000, "doc_count": 157, "unique_customers": { "value": 43 }, "revenue": { "value": 11009.45703125 }, "avg_basket_size": { "value": 2.0955414012738856 } }, { "key_as_string": "2024-11-20", "key": 1732060800000, "doc_count": 145, "unique_customers": { "value": 44 }, "revenue": { "value": 10720.59375 }, "avg_basket_size": { "value": 2.179310344827586 } }, { "key_as_string": "2024-11-21", "key": 1732147200000, "doc_count": 152, "unique_customers": { "value": 43 }, "revenue": { "value": 11185.3671875 }, "avg_basket_size": { "value": 2.1710526315789473 } }, { "key_as_string": "2024-11-22", "key": 1732233600000, "doc_count": 163, "unique_customers": { "value": 44 }, "revenue": { "value": 13560.140625 }, "avg_basket_size": { "value": 2.2576687116564416 } }, { "key_as_string": "2024-11-23", "key": 1732320000000, "doc_count": 141, "unique_customers": { "value": 45 }, "revenue": { "value": 9884.78125 }, "avg_basket_size": { "value": 2.099290780141844 } }, { "key_as_string": "2024-11-24", "key": 1732406400000, "doc_count": 151, "unique_customers": { "value": 44 }, "revenue": { "value": 11075.65625 }, "avg_basket_size": { "value": 2.0927152317880795 } }, { "key_as_string": "2024-11-25", "key": 1732492800000, "doc_count": 143, "unique_customers": { "value": 41 }, "revenue": { "value": 10323.8515625 }, "avg_basket_size": { "value": 2.167832167832168 } }, { "key_as_string": "2024-11-26", "key": 1732579200000, "doc_count": 143, "unique_customers": { "value": 44 }, "revenue": { "value": 10369.546875 }, "avg_basket_size": { "value": 2.167832167832168 } }, { "key_as_string": "2024-11-27", "key": 1732665600000, "doc_count": 142, "unique_customers": { "value": 46 }, "revenue": { "value": 11711.890625 }, "avg_basket_size": { "value": 2.1971830985915495 } }, { "key_as_string": "2024-11-28", "key": 1732752000000, "doc_count": 161, "unique_customers": { "value": 43 }, "revenue": { "value": 12612.6640625 }, "avg_basket_size": { "value": 2.1180124223602483 } }, { "key_as_string": "2024-11-29", "key": 1732838400000, "doc_count": 144, "unique_customers": { "value": 42 }, "revenue": { "value": 10176.87890625 }, "avg_basket_size": { "value": 2.0347222222222223 } }, { "key_as_string": "2024-11-30", "key": 1732924800000, "doc_count": 157, "unique_customers": { "value": 43 }, "revenue": { "value": 11480.33203125 }, "avg_basket_size": { "value": 2.159235668789809 } }, { "key_as_string": "2024-12-01", "key": 1733011200000, "doc_count": 158, "unique_customers": { "value": 42 }, "revenue": { "value": 11533.265625 }, "avg_basket_size": { "value": 2.0822784810126582 } }, { "key_as_string": "2024-12-02", "key": 1733097600000, "doc_count": 144, "unique_customers": { "value": 43 }, "revenue": { "value": 10499.8125 }, "avg_basket_size": { "value": 2.201388888888889 } }, { "key_as_string": "2024-12-03", "key": 1733184000000, "doc_count": 151, "unique_customers": { "value": 40 }, "revenue": { "value": 12111.6875 }, "avg_basket_size": { "value": 2.172185430463576 } }, { "key_as_string": "2024-12-04", "key": 1733270400000, "doc_count": 145, "unique_customers": { "value": 40 }, "revenue": { "value": 10530.765625 }, "avg_basket_size": { "value": 2.0965517241379312 } }, { "key_as_string": "2024-12-05", "key": 1733356800000, "doc_count": 157, "unique_customers": { "value": 43 }, "revenue": { "value": 11872.5625 }, "avg_basket_size": { "value": 2.1464968152866244 } }, { "key_as_string": "2024-12-06", "key": 1733443200000, "doc_count": 158, "unique_customers": { "value": 42 }, "revenue": { "value": 12109.453125 }, "avg_basket_size": { "value": 2.151898734177215 } }, { "key_as_string": "2024-12-07", "key": 1733529600000, "doc_count": 153, "unique_customers": { "value": 42 }, "revenue": { "value": 11057.40625 }, "avg_basket_size": { "value": 2.111111111111111 } }, { "key_as_string": "2024-12-08", "key": 1733616000000, "doc_count": 165, "unique_customers": { "value": 42 }, "revenue": { "value": 13095.609375 }, "avg_basket_size": { "value": 2.1818181818181817 } }, { "key_as_string": "2024-12-09", "key": 1733702400000, "doc_count": 153, "unique_customers": { "value": 41 }, "revenue": { "value": 12574.015625 }, "avg_basket_size": { "value": 2.2287581699346406 } }, { "key_as_string": "2024-12-10", "key": 1733788800000, "doc_count": 158, "unique_customers": { "value": 42 }, "revenue": { "value": 11188.1875 }, "avg_basket_size": { "value": 2.151898734177215 } }, { "key_as_string": "2024-12-11", "key": 1733875200000, "doc_count": 160, "unique_customers": { "value": 42 }, "revenue": { "value": 12117.65625 }, "avg_basket_size": { "value": 2.20625 } }, { "key_as_string": "2024-12-12", "key": 1733961600000, "doc_count": 159, "unique_customers": { "value": 45 }, "revenue": { "value": 11558.25 }, "avg_basket_size": { "value": 2.1823899371069184 } }, { "key_as_string": "2024-12-13", "key": 1734048000000, "doc_count": 152, "unique_customers": { "value": 45 }, "revenue": { "value": 11921.1171875 }, "avg_basket_size": { "value": 2.289473684210526 } }, { "key_as_string": "2024-12-14", "key": 1734134400000, "doc_count": 142, "unique_customers": { "value": 45 }, "revenue": { "value": 11135.03125 }, "avg_basket_size": { "value": 2.183098591549296 } } ] } } }
Track trends and patterns
editYou can use pipeline aggregations on the results of other aggregations. Let’s analyze how metrics change over time.
Smooth out daily fluctuations
editMoving averages help identify trends by reducing day-to-day noise in the data. Let’s observe sales trends more clearly by smoothing daily revenue variations, using the Moving Function aggregation.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "daily_sales": { "date_histogram": { "field": "order_date", "calendar_interval": "day" }, "aggs": { "daily_revenue": { "sum": { "field": "taxful_total_price" } }, "smoothed_revenue": { "moving_fn": { "buckets_path": "daily_revenue", "window": 3, "script": "MovingFunctions.unweightedAvg(values)" } } } } } }
Calculate daily revenue first. |
|
Create a smoothed version of the daily revenue. |
|
Use |
|
Reference the revenue from our date histogram. |
|
Use a 3-day window — use different window sizes to see trends at different time scales. |
|
Use the built-in unweighted average function in the |
Example response
{ "took": 13, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 4675, "relation": "eq" }, "max_score": null, "hits": [] }, "aggregations": { "daily_sales": { "buckets": [ { "key_as_string": "2024-11-14T00:00:00.000Z", "key": 1731542400000, "doc_count": 146, "daily_revenue": { "value": 10578.53125 }, "smoothed_revenue": { "value": null } }, { "key_as_string": "2024-11-15T00:00:00.000Z", "key": 1731628800000, "doc_count": 153, "daily_revenue": { "value": 10448 }, "smoothed_revenue": { "value": 10578.53125 } }, { "key_as_string": "2024-11-16T00:00:00.000Z", "key": 1731715200000, "doc_count": 143, "daily_revenue": { "value": 10283.484375 }, "smoothed_revenue": { "value": 10513.265625 } }, { "key_as_string": "2024-11-17T00:00:00.000Z", "key": 1731801600000, "doc_count": 140, "daily_revenue": { "value": 10145.5234375 }, "smoothed_revenue": { "value": 10436.671875 } }, { "key_as_string": "2024-11-18T00:00:00.000Z", "key": 1731888000000, "doc_count": 139, "daily_revenue": { "value": 12012.609375 }, "smoothed_revenue": { "value": 10292.3359375 } }, { "key_as_string": "2024-11-19T00:00:00.000Z", "key": 1731974400000, "doc_count": 157, "daily_revenue": { "value": 11009.45703125 }, "smoothed_revenue": { "value": 10813.872395833334 } }, { "key_as_string": "2024-11-20T00:00:00.000Z", "key": 1732060800000, "doc_count": 145, "daily_revenue": { "value": 10720.59375 }, "smoothed_revenue": { "value": 11055.86328125 } }, { "key_as_string": "2024-11-21T00:00:00.000Z", "key": 1732147200000, "doc_count": 152, "daily_revenue": { "value": 11185.3671875 }, "smoothed_revenue": { "value": 11247.553385416666 } }, { "key_as_string": "2024-11-22T00:00:00.000Z", "key": 1732233600000, "doc_count": 163, "daily_revenue": { "value": 13560.140625 }, "smoothed_revenue": { "value": 10971.805989583334 } }, { "key_as_string": "2024-11-23T00:00:00.000Z", "key": 1732320000000, "doc_count": 141, "daily_revenue": { "value": 9884.78125 }, "smoothed_revenue": { "value": 11822.033854166666 } }, { "key_as_string": "2024-11-24T00:00:00.000Z", "key": 1732406400000, "doc_count": 151, "daily_revenue": { "value": 11075.65625 }, "smoothed_revenue": { "value": 11543.4296875 } }, { "key_as_string": "2024-11-25T00:00:00.000Z", "key": 1732492800000, "doc_count": 143, "daily_revenue": { "value": 10323.8515625 }, "smoothed_revenue": { "value": 11506.859375 } }, { "key_as_string": "2024-11-26T00:00:00.000Z", "key": 1732579200000, "doc_count": 143, "daily_revenue": { "value": 10369.546875 }, "smoothed_revenue": { "value": 10428.096354166666 } }, { "key_as_string": "2024-11-27T00:00:00.000Z", "key": 1732665600000, "doc_count": 142, "daily_revenue": { "value": 11711.890625 }, "smoothed_revenue": { "value": 10589.684895833334 } }, { "key_as_string": "2024-11-28T00:00:00.000Z", "key": 1732752000000, "doc_count": 161, "daily_revenue": { "value": 12612.6640625 }, "smoothed_revenue": { "value": 10801.763020833334 } }, { "key_as_string": "2024-11-29T00:00:00.000Z", "key": 1732838400000, "doc_count": 144, "daily_revenue": { "value": 10176.87890625 }, "smoothed_revenue": { "value": 11564.700520833334 } }, { "key_as_string": "2024-11-30T00:00:00.000Z", "key": 1732924800000, "doc_count": 157, "daily_revenue": { "value": 11480.33203125 }, "smoothed_revenue": { "value": 11500.477864583334 } }, { "key_as_string": "2024-12-01T00:00:00.000Z", "key": 1733011200000, "doc_count": 158, "daily_revenue": { "value": 11533.265625 }, "smoothed_revenue": { "value": 11423.291666666666 } }, { "key_as_string": "2024-12-02T00:00:00.000Z", "key": 1733097600000, "doc_count": 144, "daily_revenue": { "value": 10499.8125 }, "smoothed_revenue": { "value": 11063.4921875 } }, { "key_as_string": "2024-12-03T00:00:00.000Z", "key": 1733184000000, "doc_count": 151, "daily_revenue": { "value": 12111.6875 }, "smoothed_revenue": { "value": 11171.13671875 } }, { "key_as_string": "2024-12-04T00:00:00.000Z", "key": 1733270400000, "doc_count": 145, "daily_revenue": { "value": 10530.765625 }, "smoothed_revenue": { "value": 11381.588541666666 } }, { "key_as_string": "2024-12-05T00:00:00.000Z", "key": 1733356800000, "doc_count": 157, "daily_revenue": { "value": 11872.5625 }, "smoothed_revenue": { "value": 11047.421875 } }, { "key_as_string": "2024-12-06T00:00:00.000Z", "key": 1733443200000, "doc_count": 158, "daily_revenue": { "value": 12109.453125 }, "smoothed_revenue": { "value": 11505.005208333334 } }, { "key_as_string": "2024-12-07T00:00:00.000Z", "key": 1733529600000, "doc_count": 153, "daily_revenue": { "value": 11057.40625 }, "smoothed_revenue": { "value": 11504.260416666666 } }, { "key_as_string": "2024-12-08T00:00:00.000Z", "key": 1733616000000, "doc_count": 165, "daily_revenue": { "value": 13095.609375 }, "smoothed_revenue": { "value": 11679.807291666666 } }, { "key_as_string": "2024-12-09T00:00:00.000Z", "key": 1733702400000, "doc_count": 153, "daily_revenue": { "value": 12574.015625 }, "smoothed_revenue": { "value": 12087.489583333334 } }, { "key_as_string": "2024-12-10T00:00:00.000Z", "key": 1733788800000, "doc_count": 158, "daily_revenue": { "value": 11188.1875 }, "smoothed_revenue": { "value": 12242.34375 } }, { "key_as_string": "2024-12-11T00:00:00.000Z", "key": 1733875200000, "doc_count": 160, "daily_revenue": { "value": 12117.65625 }, "smoothed_revenue": { "value": 12285.9375 } }, { "key_as_string": "2024-12-12T00:00:00.000Z", "key": 1733961600000, "doc_count": 159, "daily_revenue": { "value": 11558.25 }, "smoothed_revenue": { "value": 11959.953125 } }, { "key_as_string": "2024-12-13T00:00:00.000Z", "key": 1734048000000, "doc_count": 152, "daily_revenue": { "value": 11921.1171875 }, "smoothed_revenue": { "value": 11621.364583333334 } }, { "key_as_string": "2024-12-14T00:00:00.000Z", "key": 1734134400000, "doc_count": 142, "daily_revenue": { "value": 11135.03125 }, "smoothed_revenue": { "value": 11865.674479166666 } } ] } } }
Notice how the smoothed values lag behind the actual values - this is because they need previous days' data to calculate. The first day will always be null when using moving averages.
Track running totals
editTrack running totals over time using the cumulative_sum
aggregation.
GET kibana_sample_data_ecommerce/_search { "size": 0, "aggs": { "daily_sales": { "date_histogram": { "field": "order_date", "calendar_interval": "day" }, "aggs": { "revenue": { "sum": { "field": "taxful_total_price" } }, "cumulative_revenue": { "cumulative_sum": { "buckets_path": "revenue" } } } } } }
Name for our running total |
|
|
|
Reference the revenue we want to accumulate |
Example response
{ "took": 4, "timed_out": false, "_shards": { "total": 5, "successful": 5, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 4675, "relation": "eq" }, "max_score": null, "hits": [] }, "aggregations": { "daily_sales": { "buckets": [ { "key_as_string": "2024-11-14T00:00:00.000Z", "key": 1731542400000, "doc_count": 146, "revenue": { "value": 10578.53125 }, "cumulative_revenue": { "value": 10578.53125 } }, { "key_as_string": "2024-11-15T00:00:00.000Z", "key": 1731628800000, "doc_count": 153, "revenue": { "value": 10448 }, "cumulative_revenue": { "value": 21026.53125 } }, { "key_as_string": "2024-11-16T00:00:00.000Z", "key": 1731715200000, "doc_count": 143, "revenue": { "value": 10283.484375 }, "cumulative_revenue": { "value": 31310.015625 } }, { "key_as_string": "2024-11-17T00:00:00.000Z", "key": 1731801600000, "doc_count": 140, "revenue": { "value": 10145.5234375 }, "cumulative_revenue": { "value": 41455.5390625 } }, { "key_as_string": "2024-11-18T00:00:00.000Z", "key": 1731888000000, "doc_count": 139, "revenue": { "value": 12012.609375 }, "cumulative_revenue": { "value": 53468.1484375 } }, { "key_as_string": "2024-11-19T00:00:00.000Z", "key": 1731974400000, "doc_count": 157, "revenue": { "value": 11009.45703125 }, "cumulative_revenue": { "value": 64477.60546875 } }, { "key_as_string": "2024-11-20T00:00:00.000Z", "key": 1732060800000, "doc_count": 145, "revenue": { "value": 10720.59375 }, "cumulative_revenue": { "value": 75198.19921875 } }, { "key_as_string": "2024-11-21T00:00:00.000Z", "key": 1732147200000, "doc_count": 152, "revenue": { "value": 11185.3671875 }, "cumulative_revenue": { "value": 86383.56640625 } }, { "key_as_string": "2024-11-22T00:00:00.000Z", "key": 1732233600000, "doc_count": 163, "revenue": { "value": 13560.140625 }, "cumulative_revenue": { "value": 99943.70703125 } }, { "key_as_string": "2024-11-23T00:00:00.000Z", "key": 1732320000000, "doc_count": 141, "revenue": { "value": 9884.78125 }, "cumulative_revenue": { "value": 109828.48828125 } }, { "key_as_string": "2024-11-24T00:00:00.000Z", "key": 1732406400000, "doc_count": 151, "revenue": { "value": 11075.65625 }, "cumulative_revenue": { "value": 120904.14453125 } }, { "key_as_string": "2024-11-25T00:00:00.000Z", "key": 1732492800000, "doc_count": 143, "revenue": { "value": 10323.8515625 }, "cumulative_revenue": { "value": 131227.99609375 } }, { "key_as_string": "2024-11-26T00:00:00.000Z", "key": 1732579200000, "doc_count": 143, "revenue": { "value": 10369.546875 }, "cumulative_revenue": { "value": 141597.54296875 } }, { "key_as_string": "2024-11-27T00:00:00.000Z", "key": 1732665600000, "doc_count": 142, "revenue": { "value": 11711.890625 }, "cumulative_revenue": { "value": 153309.43359375 } }, { "key_as_string": "2024-11-28T00:00:00.000Z", "key": 1732752000000, "doc_count": 161, "revenue": { "value": 12612.6640625 }, "cumulative_revenue": { "value": 165922.09765625 } }, { "key_as_string": "2024-11-29T00:00:00.000Z", "key": 1732838400000, "doc_count": 144, "revenue": { "value": 10176.87890625 }, "cumulative_revenue": { "value": 176098.9765625 } }, { "key_as_string": "2024-11-30T00:00:00.000Z", "key": 1732924800000, "doc_count": 157, "revenue": { "value": 11480.33203125 }, "cumulative_revenue": { "value": 187579.30859375 } }, { "key_as_string": "2024-12-01T00:00:00.000Z", "key": 1733011200000, "doc_count": 158, "revenue": { "value": 11533.265625 }, "cumulative_revenue": { "value": 199112.57421875 } }, { "key_as_string": "2024-12-02T00:00:00.000Z", "key": 1733097600000, "doc_count": 144, "revenue": { "value": 10499.8125 }, "cumulative_revenue": { "value": 209612.38671875 } }, { "key_as_string": "2024-12-03T00:00:00.000Z", "key": 1733184000000, "doc_count": 151, "revenue": { "value": 12111.6875 }, "cumulative_revenue": { "value": 221724.07421875 } }, { "key_as_string": "2024-12-04T00:00:00.000Z", "key": 1733270400000, "doc_count": 145, "revenue": { "value": 10530.765625 }, "cumulative_revenue": { "value": 232254.83984375 } }, { "key_as_string": "2024-12-05T00:00:00.000Z", "key": 1733356800000, "doc_count": 157, "revenue": { "value": 11872.5625 }, "cumulative_revenue": { "value": 244127.40234375 } }, { "key_as_string": "2024-12-06T00:00:00.000Z", "key": 1733443200000, "doc_count": 158, "revenue": { "value": 12109.453125 }, "cumulative_revenue": { "value": 256236.85546875 } }, { "key_as_string": "2024-12-07T00:00:00.000Z", "key": 1733529600000, "doc_count": 153, "revenue": { "value": 11057.40625 }, "cumulative_revenue": { "value": 267294.26171875 } }, { "key_as_string": "2024-12-08T00:00:00.000Z", "key": 1733616000000, "doc_count": 165, "revenue": { "value": 13095.609375 }, "cumulative_revenue": { "value": 280389.87109375 } }, { "key_as_string": "2024-12-09T00:00:00.000Z", "key": 1733702400000, "doc_count": 153, "revenue": { "value": 12574.015625 }, "cumulative_revenue": { "value": 292963.88671875 } }, { "key_as_string": "2024-12-10T00:00:00.000Z", "key": 1733788800000, "doc_count": 158, "revenue": { "value": 11188.1875 }, "cumulative_revenue": { "value": 304152.07421875 } }, { "key_as_string": "2024-12-11T00:00:00.000Z", "key": 1733875200000, "doc_count": 160, "revenue": { "value": 12117.65625 }, "cumulative_revenue": { "value": 316269.73046875 } }, { "key_as_string": "2024-12-12T00:00:00.000Z", "key": 1733961600000, "doc_count": 159, "revenue": { "value": 11558.25 }, "cumulative_revenue": { "value": 327827.98046875 } }, { "key_as_string": "2024-12-13T00:00:00.000Z", "key": 1734048000000, "doc_count": 152, "revenue": { "value": 11921.1171875 }, "cumulative_revenue": { "value": 339749.09765625 } }, { "key_as_string": "2024-12-14T00:00:00.000Z", "key": 1734134400000, "doc_count": 142, "revenue": { "value": 11135.03125 }, "cumulative_revenue": { "value": 350884.12890625 } } ] } } }
Next steps
editRefer to the aggregations reference for more details on all available aggregation types.