- Elasticsearch Guide: other versions:
- What’s new in 8.17
- Elasticsearch basics
- Quick starts
- Set up Elasticsearch
- Run Elasticsearch locally
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Data stream lifecycle settings
- Field data cache settings
- Local gateway settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- Inference settings
- License settings
- Machine learning settings
- Monitoring settings
- Node settings
- Networking
- Node query cache settings
- Path settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Set JVM options
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Pass-through object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
analyzer
coerce
copy_to
doc_values
dynamic
eager_global_ordinals
enabled
format
ignore_above
index.mapping.ignore_above
ignore_malformed
index
index_options
index_phrases
index_prefixes
meta
fields
normalizer
norms
null_value
position_increment_gap
properties
search_analyzer
similarity
store
subobjects
term_vector
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- IP Location
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Terminate
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Re-ranking
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- Connectors
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Cross-cluster replication
- Data store architecture
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector features
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Claim connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Delete inference API
- Get inference API
- Perform inference API
- Create inference API
- Stream inference API
- Update inference API
- AlibabaCloud AI Search inference service
- Amazon Bedrock inference service
- Anthropic inference service
- Azure AI studio inference service
- Azure OpenAI inference service
- Cohere inference service
- Elasticsearch inference service
- ELSER inference service
- Google AI Studio inference service
- Google Vertex AI inference service
- HuggingFace inference service
- Mistral inference service
- OpenAI inference service
- Watsonx inference service
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Bulk create or update roles API
- Bulk delete roles API
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Query Role
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- Optimizations
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- Migration guide
- Release notes
- Elasticsearch version 8.17.1
- Elasticsearch version 8.17.0
- Elasticsearch version 8.16.2
- Elasticsearch version 8.16.1
- Elasticsearch version 8.16.0
- Elasticsearch version 8.15.5
- Elasticsearch version 8.15.4
- Elasticsearch version 8.15.3
- Elasticsearch version 8.15.2
- Elasticsearch version 8.15.1
- Elasticsearch version 8.15.0
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Modify a data stream
editModify a data stream
editChange mappings and settings for a data stream
editEach data stream has a matching index template. Mappings and index settings from this template are applied to new backing indices created for the stream. This includes the stream’s first backing index, which is auto-generated when the stream is created.
Before creating a data stream, we recommend you carefully consider which mappings and settings to include in this template.
If you later need to change the mappings or settings for a data stream, you have a few options:
If your changes include modifications to existing field mappings or static index settings, a reindex is often required to apply the changes to a data stream’s backing indices. If you are already performing a reindex, you can use the same process to add new field mappings and change dynamic index settings. See Use reindex to change mappings or settings.
Add a new field mapping to a data stream
editTo add a mapping for a new field to a data stream, following these steps:
-
Update the index template used by the data stream. This ensures the new field mapping is added to future backing indices created for the stream.
For example,
my-data-stream-template
is an existing index template used bymy-data-stream
.The following create or update index template request adds a mapping for a new field,
message
, to the template.resp = client.indices.put_index_template( name="my-data-stream-template", index_patterns=[ "my-data-stream*" ], data_stream={}, priority=500, template={ "mappings": { "properties": { "message": { "type": "text" } } } }, ) print(resp)
response = client.indices.put_index_template( name: 'my-data-stream-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, priority: 500, template: { mappings: { properties: { message: { type: 'text' } } } } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "my-data-stream-template", index_patterns: ["my-data-stream*"], data_stream: {}, priority: 500, template: { mappings: { properties: { message: { type: "text", }, }, }, }, }); console.log(response);
-
Use the update mapping API to add the new field mapping to the data stream. By default, this adds the mapping to the stream’s existing backing indices, including the write index.
The following update mapping API request adds the new
message
field mapping tomy-data-stream
.resp = client.indices.put_mapping( index="my-data-stream", properties={ "message": { "type": "text" } }, ) print(resp)
response = client.indices.put_mapping( index: 'my-data-stream', body: { properties: { message: { type: 'text' } } } ) puts response
const response = await client.indices.putMapping({ index: "my-data-stream", properties: { message: { type: "text", }, }, }); console.log(response);
PUT /my-data-stream/_mapping { "properties": { "message": { "type": "text" } } }
To add the mapping only to the stream’s write index, set the update mapping API’s
write_index_only
query parameter totrue
.The following update mapping request adds the new
message
field mapping only tomy-data-stream
's write index. The new field mapping is not added to the stream’s other backing indices.resp = client.indices.put_mapping( index="my-data-stream", write_index_only=True, properties={ "message": { "type": "text" } }, ) print(resp)
response = client.indices.put_mapping( index: 'my-data-stream', write_index_only: true, body: { properties: { message: { type: 'text' } } } ) puts response
const response = await client.indices.putMapping({ index: "my-data-stream", write_index_only: "true", properties: { message: { type: "text", }, }, }); console.log(response);
PUT /my-data-stream/_mapping?write_index_only=true { "properties": { "message": { "type": "text" } } }
Change an existing field mapping in a data stream
editThe documentation for each mapping parameter indicates whether you can update it for an existing field using the update mapping API. To update these parameters for an existing field, follow these steps:
-
Update the index template used by the data stream. This ensures the updated field mapping is added to future backing indices created for the stream.
For example,
my-data-stream-template
is an existing index template used bymy-data-stream
.The following create or update index template request changes the argument for the
host.ip
field’signore_malformed
mapping parameter totrue
.resp = client.indices.put_index_template( name="my-data-stream-template", index_patterns=[ "my-data-stream*" ], data_stream={}, priority=500, template={ "mappings": { "properties": { "host": { "properties": { "ip": { "type": "ip", "ignore_malformed": True } } } } } }, ) print(resp)
response = client.indices.put_index_template( name: 'my-data-stream-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, priority: 500, template: { mappings: { properties: { host: { properties: { ip: { type: 'ip', ignore_malformed: true } } } } } } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "my-data-stream-template", index_patterns: ["my-data-stream*"], data_stream: {}, priority: 500, template: { mappings: { properties: { host: { properties: { ip: { type: "ip", ignore_malformed: true, }, }, }, }, }, }, }); console.log(response);
-
Use the update mapping API to apply the mapping changes to the data stream. By default, this applies the changes to the stream’s existing backing indices, including the write index.
The following update mapping API request targets
my-data-stream
. The request changes the argument for thehost.ip
field’signore_malformed
mapping parameter totrue
.resp = client.indices.put_mapping( index="my-data-stream", properties={ "host": { "properties": { "ip": { "type": "ip", "ignore_malformed": True } } } }, ) print(resp)
response = client.indices.put_mapping( index: 'my-data-stream', body: { properties: { host: { properties: { ip: { type: 'ip', ignore_malformed: true } } } } } ) puts response
const response = await client.indices.putMapping({ index: "my-data-stream", properties: { host: { properties: { ip: { type: "ip", ignore_malformed: true, }, }, }, }, }); console.log(response);
PUT /my-data-stream/_mapping { "properties": { "host": { "properties": { "ip": { "type": "ip", "ignore_malformed": true } } } } }
To apply the mapping changes only to the stream’s write index, set the put mapping API’s
write_index_only
query parameter totrue
.The following update mapping request changes the
host.ip
field’s mapping only formy-data-stream
's write index. The change is not applied to the stream’s other backing indices.resp = client.indices.put_mapping( index="my-data-stream", write_index_only=True, properties={ "host": { "properties": { "ip": { "type": "ip", "ignore_malformed": True } } } }, ) print(resp)
response = client.indices.put_mapping( index: 'my-data-stream', write_index_only: true, body: { properties: { host: { properties: { ip: { type: 'ip', ignore_malformed: true } } } } } ) puts response
const response = await client.indices.putMapping({ index: "my-data-stream", write_index_only: "true", properties: { host: { properties: { ip: { type: "ip", ignore_malformed: true, }, }, }, }, }); console.log(response);
PUT /my-data-stream/_mapping?write_index_only=true { "properties": { "host": { "properties": { "ip": { "type": "ip", "ignore_malformed": true } } } } }
Except for supported mapping parameters, we don’t recommend you change the mapping or field data type of existing fields, even in a data stream’s matching index template or its backing indices. Changing the mapping of an existing field could invalidate any data that’s already indexed.
If you need to change the mapping of an existing field, create a new data stream and reindex your data into it. See Use reindex to change mappings or settings.
Change a dynamic index setting for a data stream
editTo change a dynamic index setting for a data stream, follow these steps:
-
Update the index template used by the data stream. This ensures the setting is applied to future backing indices created for the stream.
For example,
my-data-stream-template
is an existing index template used bymy-data-stream
.The following create or update index template request changes the template’s
index.refresh_interval
index setting to30s
(30 seconds).resp = client.indices.put_index_template( name="my-data-stream-template", index_patterns=[ "my-data-stream*" ], data_stream={}, priority=500, template={ "settings": { "index.refresh_interval": "30s" } }, ) print(resp)
response = client.indices.put_index_template( name: 'my-data-stream-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, priority: 500, template: { settings: { 'index.refresh_interval' => '30s' } } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "my-data-stream-template", index_patterns: ["my-data-stream*"], data_stream: {}, priority: 500, template: { settings: { "index.refresh_interval": "30s", }, }, }); console.log(response);
-
Use the update index settings API to update the index setting for the data stream. By default, this applies the setting to the stream’s existing backing indices, including the write index.
The following update index settings API request updates the
index.refresh_interval
setting formy-data-stream
.resp = client.indices.put_settings( index="my-data-stream", settings={ "index": { "refresh_interval": "30s" } }, ) print(resp)
response = client.indices.put_settings( index: 'my-data-stream', body: { index: { refresh_interval: '30s' } } ) puts response
const response = await client.indices.putSettings({ index: "my-data-stream", settings: { index: { refresh_interval: "30s", }, }, }); console.log(response);
PUT /my-data-stream/_settings { "index": { "refresh_interval": "30s" } }
To change the index.lifecycle.name
setting, first use the
remove policy API to remove the existing ILM
policy. See Switch lifecycle policies.
Change a static index setting for a data stream
editStatic index settings can only be set when a backing index is created. You cannot update static index settings using the update index settings API.
To apply a new static setting to future backing indices, update the index template used by the data stream. The setting is automatically applied to any backing index created after the update.
For example, my-data-stream-template
is an existing index template used by
my-data-stream
.
The following create or update index template API requests
adds new sort.field
and sort.order index
settings to the template.
resp = client.indices.put_index_template( name="my-data-stream-template", index_patterns=[ "my-data-stream*" ], data_stream={}, priority=500, template={ "settings": { "sort.field": [ "@timestamp" ], "sort.order": [ "desc" ] } }, ) print(resp)
response = client.indices.put_index_template( name: 'my-data-stream-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, priority: 500, template: { settings: { 'sort.field' => [ '@timestamp' ], 'sort.order' => [ 'desc' ] } } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "my-data-stream-template", index_patterns: ["my-data-stream*"], data_stream: {}, priority: 500, template: { settings: { "sort.field": ["@timestamp"], "sort.order": ["desc"], }, }, }); console.log(response);
PUT /_index_template/my-data-stream-template { "index_patterns": [ "my-data-stream*" ], "data_stream": { }, "priority": 500, "template": { "settings": { "sort.field": [ "@timestamp"], "sort.order": [ "desc"] } } }
If wanted, you can roll over the data stream to immediately apply the setting to the data stream’s write index. This affects any new data added to the stream after the rollover. However, it does not affect the data stream’s existing backing indices or existing data.
To apply static setting changes to existing backing indices, you must create a new data stream and reindex your data into it. See Use reindex to change mappings or settings.
Use reindex to change mappings or settings
editYou can use a reindex to change the mappings or settings of a data stream. This is often required to change the data type of an existing field or update static index settings for backing indices.
To reindex a data stream, first create or update an index template so that it contains the wanted mapping or setting changes. You can then reindex the existing data stream into a new stream matching the template. This applies the mapping and setting changes in the template to each document and backing index added to the new data stream. These changes also affect any future backing index created by the new stream.
Follow these steps:
-
Choose a name or index pattern for a new data stream. This new data stream will contain data from your existing stream.
You can use the resolve index API to check if the name or pattern matches any existing indices, aliases, or data streams. If so, you should consider using another name or pattern.
The following resolve index API request checks for any existing indices, aliases, or data streams that start with
new-data-stream
. If not, thenew-data-stream*
index pattern can be used to create a new data stream.resp = client.indices.resolve_index( name="new-data-stream*", ) print(resp)
response = client.indices.resolve_index( name: 'new-data-stream*' ) puts response
const response = await client.indices.resolveIndex({ name: "new-data-stream*", }); console.log(response);
GET /_resolve/index/new-data-stream*
The API returns the following response, indicating no existing targets match this pattern.
{ "indices": [ ], "aliases": [ ], "data_streams": [ ] }
-
Create or update an index template. This template should contain the mappings and settings you’d like to apply to the new data stream’s backing indices.
This index template must meet the requirements for a data stream template. It should also contain your previously chosen name or index pattern in the
index_patterns
property.If you are only adding or changing a few things, we recommend you create a new template by copying an existing one and modifying it as needed.
For example,
my-data-stream-template
is an existing index template used bymy-data-stream
.The following create or update index template API request creates a new index template,
new-data-stream-template
.new-data-stream-template
usesmy-data-stream-template
as its basis, with the following changes:-
The index pattern in
index_patterns
matches any index or data stream starting withnew-data-stream
. -
The
@timestamp
field mapping uses thedate_nanos
field data type rather than thedate
data type. -
The template includes
sort.field
andsort.order
index settings, which were not in the originalmy-data-stream-template
template.
resp = client.indices.put_index_template( name="new-data-stream-template", index_patterns=[ "new-data-stream*" ], data_stream={}, priority=500, template={ "mappings": { "properties": { "@timestamp": { "type": "date_nanos" } } }, "settings": { "sort.field": [ "@timestamp" ], "sort.order": [ "desc" ] } }, ) print(resp)
response = client.indices.put_index_template( name: 'new-data-stream-template', body: { index_patterns: [ 'new-data-stream*' ], data_stream: {}, priority: 500, template: { mappings: { properties: { "@timestamp": { type: 'date_nanos' } } }, settings: { 'sort.field' => [ '@timestamp' ], 'sort.order' => [ 'desc' ] } } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "new-data-stream-template", index_patterns: ["new-data-stream*"], data_stream: {}, priority: 500, template: { mappings: { properties: { "@timestamp": { type: "date_nanos", }, }, }, settings: { "sort.field": ["@timestamp"], "sort.order": ["desc"], }, }, }); console.log(response);
-
The index pattern in
-
Use the create data stream API to manually create the new data stream. The name of the data stream must match the index pattern defined in the new template’s
index_patterns
property.We do not recommend indexing new data to create this data stream. Later, you will reindex older data from an existing data stream into this new stream. This could result in one or more backing indices that contains a mix of new and old data.
Mixing new and old data in a data stream
While mixing new and old data is safe, it could interfere with data retention. If you delete older indices, you could accidentally delete a backing index that contains both new and old data. To prevent premature data loss, you would need to retain such a backing index until you are ready to delete its newest data.
The following create data stream API request targets
new-data-stream
, which matches the index pattern fornew-data-stream-template
. Because no existing index or data stream uses this name, this request creates thenew-data-stream
data stream.resp = client.indices.create_data_stream( name="new-data-stream", ) print(resp)
response = client.indices.create_data_stream( name: 'new-data-stream' ) puts response
const response = await client.indices.createDataStream({ name: "new-data-stream", }); console.log(response);
PUT /_data_stream/new-data-stream
- If you do not want to mix new and old data in your new data stream, pause the indexing of new documents. While mixing old and new data is safe, it could interfere with data retention. See Mixing new and old data in a data stream.
-
If you use ILM to automate rollover, reduce the ILM poll interval. This ensures the current write index doesn’t grow too large while waiting for the rollover check. By default, ILM checks rollover conditions every 10 minutes.
The following cluster update settings API request lowers the
indices.lifecycle.poll_interval
setting to1m
(one minute).resp = client.cluster.put_settings( persistent={ "indices.lifecycle.poll_interval": "1m" }, ) print(resp)
response = client.cluster.put_settings( body: { persistent: { 'indices.lifecycle.poll_interval' => '1m' } } ) puts response
const response = await client.cluster.putSettings({ persistent: { "indices.lifecycle.poll_interval": "1m", }, }); console.log(response);
PUT /_cluster/settings { "persistent": { "indices.lifecycle.poll_interval": "1m" } }
-
Reindex your data to the new data stream using an
op_type
ofcreate
.If you want to partition the data in the order in which it was originally indexed, you can run separate reindex requests. These reindex requests can use individual backing indices as the source. You can use the get data stream API to retrieve a list of backing indices.
For example, you plan to reindex data from
my-data-stream
intonew-data-stream
. However, you want to submit a separate reindex request for each backing index inmy-data-stream
, starting with the oldest backing index. This preserves the order in which the data was originally indexed.The following get data stream API request retrieves information about
my-data-stream
, including a list of its backing indices.resp = client.indices.get_data_stream( name="my-data-stream", ) print(resp)
response = client.indices.get_data_stream( name: 'my-data-stream' ) puts response
const response = await client.indices.getDataStream({ name: "my-data-stream", }); console.log(response);
GET /_data_stream/my-data-stream
The response’s
indices
property contains an array of the stream’s current backing indices. The first item in the array contains information about the stream’s oldest backing index.{ "data_streams": [ { "name": "my-data-stream", "timestamp_field": { "name": "@timestamp" }, "indices": [ { "index_name": ".ds-my-data-stream-2099.03.07-000001", "index_uuid": "Gpdiyq8sRuK9WuthvAdFbw", "prefer_ilm": true, "managed_by": "Unmanaged" }, { "index_name": ".ds-my-data-stream-2099.03.08-000002", "index_uuid": "_eEfRrFHS9OyhqWntkgHAQ", "prefer_ilm": true, "managed_by": "Unmanaged" } ], "generation": 2, "status": "GREEN", "next_generation_managed_by": "Unmanaged", "prefer_ilm": true, "template": "my-data-stream-template", "hidden": false, "system": false, "allow_custom_routing": false, "replicated": false, "rollover_on_write": false } ] }
First item in the
indices
array formy-data-stream
. This item contains information about the stream’s oldest backing index,.ds-my-data-stream-2099.03.07-000001
.The following reindex API request copies documents from
.ds-my-data-stream-2099.03.07-000001
tonew-data-stream
. The request’sop_type
iscreate
.resp = client.reindex( source={ "index": ".ds-my-data-stream-2099.03.07-000001" }, dest={ "index": "new-data-stream", "op_type": "create" }, ) print(resp)
response = client.reindex( body: { source: { index: '.ds-my-data-stream-2099.03.07-000001' }, dest: { index: 'new-data-stream', op_type: 'create' } } ) puts response
const response = await client.reindex({ source: { index: ".ds-my-data-stream-2099.03.07-000001", }, dest: { index: "new-data-stream", op_type: "create", }, }); console.log(response);
POST /_reindex { "source": { "index": ".ds-my-data-stream-2099.03.07-000001" }, "dest": { "index": "new-data-stream", "op_type": "create" } }
You can also use a query to reindex only a subset of documents with each request.
The following reindex API request copies documents from
my-data-stream
tonew-data-stream
. The request uses arange
query to only reindex documents with a timestamp within the last week. Note the request’sop_type
iscreate
.resp = client.reindex( source={ "index": "my-data-stream", "query": { "range": { "@timestamp": { "gte": "now-7d/d", "lte": "now/d" } } } }, dest={ "index": "new-data-stream", "op_type": "create" }, ) print(resp)
response = client.reindex( body: { source: { index: 'my-data-stream', query: { range: { "@timestamp": { gte: 'now-7d/d', lte: 'now/d' } } } }, dest: { index: 'new-data-stream', op_type: 'create' } } ) puts response
const response = await client.reindex({ source: { index: "my-data-stream", query: { range: { "@timestamp": { gte: "now-7d/d", lte: "now/d", }, }, }, }, dest: { index: "new-data-stream", op_type: "create", }, }); console.log(response);
POST /_reindex { "source": { "index": "my-data-stream", "query": { "range": { "@timestamp": { "gte": "now-7d/d", "lte": "now/d" } } } }, "dest": { "index": "new-data-stream", "op_type": "create" } }
-
If you previously changed your ILM poll interval, change it back to its original value when reindexing is complete. This prevents unnecessary load on the master node.
The following cluster update settings API request resets the
indices.lifecycle.poll_interval
setting to its default value.resp = client.cluster.put_settings( persistent={ "indices.lifecycle.poll_interval": None }, ) print(resp)
response = client.cluster.put_settings( body: { persistent: { 'indices.lifecycle.poll_interval' => nil } } ) puts response
const response = await client.cluster.putSettings({ persistent: { "indices.lifecycle.poll_interval": null, }, }); console.log(response);
PUT /_cluster/settings { "persistent": { "indices.lifecycle.poll_interval": null } }
- Resume indexing using the new data stream. Searches on this stream will now query your new data and the reindexed data.
-
Once you have verified that all reindexed data is available in the new data stream, you can safely remove the old stream.
The following delete data stream API request deletes
my-data-stream
. This request also deletes the stream’s backing indices and any data they contain.resp = client.indices.delete_data_stream( name="my-data-stream", ) print(resp)
response = client.indices.delete_data_stream( name: 'my-data-stream' ) puts response
const response = await client.indices.deleteDataStream({ name: "my-data-stream", }); console.log(response);
DELETE /_data_stream/my-data-stream
Update or add an alias to a data stream
editUse the aliases API to update an existing data stream’s aliases. Changing an existing data stream’s aliases in its index pattern has no effect.
For example, the logs
alias points to a single data stream. The following
request swaps the stream for the alias. During this swap, the logs
alias has
no downtime and never points to both streams at the same time.
resp = client.indices.update_aliases( actions=[ { "remove": { "index": "logs-nginx.access-prod", "alias": "logs" } }, { "add": { "index": "logs-my_app-default", "alias": "logs" } } ], ) print(resp)
response = client.indices.update_aliases( body: { actions: [ { remove: { index: 'logs-nginx.access-prod', alias: 'logs' } }, { add: { index: 'logs-my_app-default', alias: 'logs' } } ] } ) puts response
const response = await client.indices.updateAliases({ actions: [ { remove: { index: "logs-nginx.access-prod", alias: "logs", }, }, { add: { index: "logs-my_app-default", alias: "logs", }, }, ], }); console.log(response);
POST _aliases { "actions": [ { "remove": { "index": "logs-nginx.access-prod", "alias": "logs" } }, { "add": { "index": "logs-my_app-default", "alias": "logs" } } ] }
On this page
- Change mappings and settings for a data stream
- Add a new field mapping to a data stream
- Change an existing field mapping in a data stream
- Change a dynamic index setting for a data stream
- Change a static index setting for a data stream
- Use reindex to change mappings or settings
- Update or add an alias to a data stream