Run downsampling manually
editRun downsampling manually
editThe recommended way to downsample a time-series data stream (TSDS) is through index lifecycle management (ILM). However, if you’re not using ILM, you can downsample a TSDS manually. This guide shows you how, using typical Kubernetes cluster monitoring data.
To test out manual downsampling, follow these steps:
Prerequisites
edit- Refer to the TSDS prerequisites.
- It is not possible to downsample a data stream directly, nor multiple indices at once. It’s only possible to downsample one time series index (TSDS backing index).
- In order to downsample an index, it needs to be read-only. For a TSDS write index, this means it needs to be rolled over and made read-only first.
- Downsampling uses UTC timestamps.
- Downsampling needs at least one metric field to exist in the time series index.
Create a time series data stream
editFirst, you’ll create a TSDS. For simplicity, in the time series mapping all
time_series_metric
parameters are set to type gauge
, but
other values such as counter
and histogram
may also
be used. The time_series_metric
values determine the kind of statistical
representations that are used during downsampling.
The index template includes a set of static
time series dimensions: host
, namespace
,
node
, and pod
. The time series dimensions are not changed by the
downsampling process.
resp = client.indices.put_index_template( name="my-data-stream-template", index_patterns=[ "my-data-stream*" ], data_stream={}, template={ "settings": { "index": { "mode": "time_series", "routing_path": [ "kubernetes.namespace", "kubernetes.host", "kubernetes.node", "kubernetes.pod" ], "number_of_replicas": 0, "number_of_shards": 2 } }, "mappings": { "properties": { "@timestamp": { "type": "date" }, "kubernetes": { "properties": { "container": { "properties": { "cpu": { "properties": { "usage": { "properties": { "core": { "properties": { "ns": { "type": "long" } } }, "limit": { "properties": { "pct": { "type": "float" } } }, "nanocores": { "type": "long", "time_series_metric": "gauge" }, "node": { "properties": { "pct": { "type": "float" } } } } } } }, "memory": { "properties": { "available": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "majorpagefaults": { "type": "long" }, "pagefaults": { "type": "long", "time_series_metric": "gauge" }, "rss": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "usage": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" }, "limit": { "properties": { "pct": { "type": "float" } } }, "node": { "properties": { "pct": { "type": "float" } } } } }, "workingset": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } } } }, "name": { "type": "keyword" }, "start_time": { "type": "date" } } }, "host": { "type": "keyword", "time_series_dimension": True }, "namespace": { "type": "keyword", "time_series_dimension": True }, "node": { "type": "keyword", "time_series_dimension": True }, "pod": { "type": "keyword", "time_series_dimension": True } } } } } }, ) print(resp)
response = client.indices.put_index_template( name: 'my-data-stream-template', body: { index_patterns: [ 'my-data-stream*' ], data_stream: {}, template: { settings: { index: { mode: 'time_series', routing_path: [ 'kubernetes.namespace', 'kubernetes.host', 'kubernetes.node', 'kubernetes.pod' ], number_of_replicas: 0, number_of_shards: 2 } }, mappings: { properties: { "@timestamp": { type: 'date' }, kubernetes: { properties: { container: { properties: { cpu: { properties: { usage: { properties: { core: { properties: { ns: { type: 'long' } } }, limit: { properties: { pct: { type: 'float' } } }, nanocores: { type: 'long', time_series_metric: 'gauge' }, node: { properties: { pct: { type: 'float' } } } } } } }, memory: { properties: { available: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' } } }, majorpagefaults: { type: 'long' }, pagefaults: { type: 'long', time_series_metric: 'gauge' }, rss: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' } } }, usage: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' }, limit: { properties: { pct: { type: 'float' } } }, node: { properties: { pct: { type: 'float' } } } } }, workingset: { properties: { bytes: { type: 'long', time_series_metric: 'gauge' } } } } }, name: { type: 'keyword' }, start_time: { type: 'date' } } }, host: { type: 'keyword', time_series_dimension: true }, namespace: { type: 'keyword', time_series_dimension: true }, node: { type: 'keyword', time_series_dimension: true }, pod: { type: 'keyword', time_series_dimension: true } } } } } } } ) puts response
const response = await client.indices.putIndexTemplate({ name: "my-data-stream-template", index_patterns: ["my-data-stream*"], data_stream: {}, template: { settings: { index: { mode: "time_series", routing_path: [ "kubernetes.namespace", "kubernetes.host", "kubernetes.node", "kubernetes.pod", ], number_of_replicas: 0, number_of_shards: 2, }, }, mappings: { properties: { "@timestamp": { type: "date", }, kubernetes: { properties: { container: { properties: { cpu: { properties: { usage: { properties: { core: { properties: { ns: { type: "long", }, }, }, limit: { properties: { pct: { type: "float", }, }, }, nanocores: { type: "long", time_series_metric: "gauge", }, node: { properties: { pct: { type: "float", }, }, }, }, }, }, }, memory: { properties: { available: { properties: { bytes: { type: "long", time_series_metric: "gauge", }, }, }, majorpagefaults: { type: "long", }, pagefaults: { type: "long", time_series_metric: "gauge", }, rss: { properties: { bytes: { type: "long", time_series_metric: "gauge", }, }, }, usage: { properties: { bytes: { type: "long", time_series_metric: "gauge", }, limit: { properties: { pct: { type: "float", }, }, }, node: { properties: { pct: { type: "float", }, }, }, }, }, workingset: { properties: { bytes: { type: "long", time_series_metric: "gauge", }, }, }, }, }, name: { type: "keyword", }, start_time: { type: "date", }, }, }, host: { type: "keyword", time_series_dimension: true, }, namespace: { type: "keyword", time_series_dimension: true, }, node: { type: "keyword", time_series_dimension: true, }, pod: { type: "keyword", time_series_dimension: true, }, }, }, }, }, }, }); console.log(response);
PUT _index_template/my-data-stream-template { "index_patterns": [ "my-data-stream*" ], "data_stream": {}, "template": { "settings": { "index": { "mode": "time_series", "routing_path": [ "kubernetes.namespace", "kubernetes.host", "kubernetes.node", "kubernetes.pod" ], "number_of_replicas": 0, "number_of_shards": 2 } }, "mappings": { "properties": { "@timestamp": { "type": "date" }, "kubernetes": { "properties": { "container": { "properties": { "cpu": { "properties": { "usage": { "properties": { "core": { "properties": { "ns": { "type": "long" } } }, "limit": { "properties": { "pct": { "type": "float" } } }, "nanocores": { "type": "long", "time_series_metric": "gauge" }, "node": { "properties": { "pct": { "type": "float" } } } } } } }, "memory": { "properties": { "available": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "majorpagefaults": { "type": "long" }, "pagefaults": { "type": "long", "time_series_metric": "gauge" }, "rss": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } }, "usage": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" }, "limit": { "properties": { "pct": { "type": "float" } } }, "node": { "properties": { "pct": { "type": "float" } } } } }, "workingset": { "properties": { "bytes": { "type": "long", "time_series_metric": "gauge" } } } } }, "name": { "type": "keyword" }, "start_time": { "type": "date" } } }, "host": { "type": "keyword", "time_series_dimension": true }, "namespace": { "type": "keyword", "time_series_dimension": true }, "node": { "type": "keyword", "time_series_dimension": true }, "pod": { "type": "keyword", "time_series_dimension": true } } } } } } }
Ingest time series data
editBecause time series data streams have been designed to
only accept recent data, in this example, you’ll
use an ingest pipeline to time-shift the data as it gets indexed. As a result,
the indexed data will have an @timestamp
from the last 15 minutes.
Create the pipeline with this request:
resp = client.ingest.put_pipeline( id="my-timestamp-pipeline", description="Shifts the @timestamp to the last 15 minutes", processors=[ { "set": { "field": "ingest_time", "value": "{{_ingest.timestamp}}" } }, { "script": { "lang": "painless", "source": "\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse(\"2022-06-21T15:49:00Z\"),\n ZonedDateTime.parse(ctx[\"ingest_time\"])\n );\n ctx[\"@timestamp\"] = ZonedDateTime.parse(ctx[\"@timestamp\"]).plus(delta,ChronoUnit.SECONDS).toString();\n " } } ], ) print(resp)
response = client.ingest.put_pipeline( id: 'my-timestamp-pipeline', body: { description: 'Shifts the @timestamp to the last 15 minutes', processors: [ { set: { field: 'ingest_time', value: '{{_ingest.timestamp}}' } }, { script: { lang: 'painless', source: "\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse(\"2022-06-21T15:49:00Z\"),\n ZonedDateTime.parse(ctx[\"ingest_time\"])\n );\n ctx[\"@timestamp\"] = ZonedDateTime.parse(ctx[\"@timestamp\"]).plus(delta,ChronoUnit.SECONDS).toString();\n " } } ] } ) puts response
const response = await client.ingest.putPipeline({ id: "my-timestamp-pipeline", description: "Shifts the @timestamp to the last 15 minutes", processors: [ { set: { field: "ingest_time", value: "{{_ingest.timestamp}}", }, }, { script: { lang: "painless", source: '\n def delta = ChronoUnit.SECONDS.between(\n ZonedDateTime.parse("2022-06-21T15:49:00Z"),\n ZonedDateTime.parse(ctx["ingest_time"])\n );\n ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString();\n ', }, }, ], }); console.log(response);
PUT _ingest/pipeline/my-timestamp-pipeline { "description": "Shifts the @timestamp to the last 15 minutes", "processors": [ { "set": { "field": "ingest_time", "value": "{{_ingest.timestamp}}" } }, { "script": { "lang": "painless", "source": """ def delta = ChronoUnit.SECONDS.between( ZonedDateTime.parse("2022-06-21T15:49:00Z"), ZonedDateTime.parse(ctx["ingest_time"]) ); ctx["@timestamp"] = ZonedDateTime.parse(ctx["@timestamp"]).plus(delta,ChronoUnit.SECONDS).toString(); """ } } ] }
Next, use a bulk API request to automatically create your TSDS and index a set of ten documents:
resp = client.bulk( index="my-data-stream", refresh=True, pipeline="my-timestamp-pipeline", operations=[ { "create": {} }, { "@timestamp": "2022-06-21T15:49:00Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 91153, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 463314616 }, "usage": { "bytes": 307007078, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 585236 }, "rss": { "bytes": 102728 }, "pagefaults": 120901, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:45:50Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 124501, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 982546514 }, "usage": { "bytes": 360035574, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 1339884 }, "rss": { "bytes": 381174 }, "pagefaults": 178473, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:44:50Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 38907, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 862723768 }, "usage": { "bytes": 379572388, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 431227 }, "rss": { "bytes": 386580 }, "pagefaults": 233166, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:44:40Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 86706, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 567160996 }, "usage": { "bytes": 103266017, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 1724908 }, "rss": { "bytes": 105431 }, "pagefaults": 233166, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:44:00Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 150069, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 639054643 }, "usage": { "bytes": 265142477, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 1786511 }, "rss": { "bytes": 189235 }, "pagefaults": 138172, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:42:40Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 82260, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 854735585 }, "usage": { "bytes": 309798052, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 924058 }, "rss": { "bytes": 110838 }, "pagefaults": 259073, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:42:10Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 153404, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 279586406 }, "usage": { "bytes": 214904955, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 1047265 }, "rss": { "bytes": 91914 }, "pagefaults": 302252, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:40:20Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 125613, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 822782853 }, "usage": { "bytes": 100475044, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 2109932 }, "rss": { "bytes": 278446 }, "pagefaults": 74843, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:40:10Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 100046, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 567160996 }, "usage": { "bytes": 362826547, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 1986724 }, "rss": { "bytes": 402801 }, "pagefaults": 296495, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } }, { "create": {} }, { "@timestamp": "2022-06-21T15:38:30Z", "kubernetes": { "host": "gke-apps-0", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0", "container": { "cpu": { "usage": { "nanocores": 40018, "core": { "ns": 12828317850 }, "node": { "pct": 0.0000277905 }, "limit": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": 1062428344 }, "usage": { "bytes": 265142477, "node": { "pct": 0.01770037710617187 }, "limit": { "pct": 0.00009923134671484496 } }, "workingset": { "bytes": 2294743 }, "rss": { "bytes": 340623 }, "pagefaults": 224530, "majorpagefaults": 0 }, "start_time": "2021-03-30T07:59:06Z", "name": "container-name-44" }, "namespace": "namespace26" } } ], ) print(resp)
response = client.bulk( index: 'my-data-stream', refresh: true, pipeline: 'my-timestamp-pipeline', body: [ { create: {} }, { "@timestamp": '2022-06-21T15:49:00Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 91_153, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 463_314_616 }, usage: { bytes: 307_007_078, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 585_236 }, rss: { bytes: 102_728 }, pagefaults: 120_901, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:45:50Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 124_501, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 982_546_514 }, usage: { bytes: 360_035_574, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_339_884 }, rss: { bytes: 381_174 }, pagefaults: 178_473, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:44:50Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 38_907, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 862_723_768 }, usage: { bytes: 379_572_388, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 431_227 }, rss: { bytes: 386_580 }, pagefaults: 233_166, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:44:40Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 86_706, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 567_160_996 }, usage: { bytes: 103_266_017, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_724_908 }, rss: { bytes: 105_431 }, pagefaults: 233_166, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:44:00Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 150_069, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 639_054_643 }, usage: { bytes: 265_142_477, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_786_511 }, rss: { bytes: 189_235 }, pagefaults: 138_172, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:42:40Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 82_260, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 854_735_585 }, usage: { bytes: 309_798_052, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 924_058 }, rss: { bytes: 110_838 }, pagefaults: 259_073, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:42:10Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 153_404, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 279_586_406 }, usage: { bytes: 214_904_955, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_047_265 }, rss: { bytes: 91_914 }, pagefaults: 302_252, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:40:20Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 125_613, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 822_782_853 }, usage: { bytes: 100_475_044, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 2_109_932 }, rss: { bytes: 278_446 }, pagefaults: 74_843, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:40:10Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 100_046, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 567_160_996 }, usage: { bytes: 362_826_547, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 1_986_724 }, rss: { bytes: 402_801 }, pagefaults: 296_495, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } }, { create: {} }, { "@timestamp": '2022-06-21T15:38:30Z', kubernetes: { host: 'gke-apps-0', node: 'gke-apps-0-0', pod: 'gke-apps-0-0-0', container: { cpu: { usage: { nanocores: 40_018, core: { ns: 12_828_317_850 }, node: { pct: 2.77905e-05 }, limit: { pct: 2.77905e-05 } } }, memory: { available: { bytes: 1_062_428_344 }, usage: { bytes: 265_142_477, node: { pct: 0.01770037710617187 }, limit: { pct: 9.923134671484496e-05 } }, workingset: { bytes: 2_294_743 }, rss: { bytes: 340_623 }, pagefaults: 224_530, majorpagefaults: 0 }, start_time: '2021-03-30T07:59:06Z', name: 'container-name-44' }, namespace: 'namespace26' } } ] ) puts response
const response = await client.bulk({ index: "my-data-stream", refresh: "true", pipeline: "my-timestamp-pipeline", operations: [ { create: {}, }, { "@timestamp": "2022-06-21T15:49:00Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 91153, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 463314616, }, usage: { bytes: 307007078, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 585236, }, rss: { bytes: 102728, }, pagefaults: 120901, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:45:50Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 124501, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 982546514, }, usage: { bytes: 360035574, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 1339884, }, rss: { bytes: 381174, }, pagefaults: 178473, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:44:50Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 38907, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 862723768, }, usage: { bytes: 379572388, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 431227, }, rss: { bytes: 386580, }, pagefaults: 233166, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:44:40Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 86706, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 567160996, }, usage: { bytes: 103266017, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 1724908, }, rss: { bytes: 105431, }, pagefaults: 233166, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:44:00Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 150069, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 639054643, }, usage: { bytes: 265142477, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 1786511, }, rss: { bytes: 189235, }, pagefaults: 138172, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:42:40Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 82260, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 854735585, }, usage: { bytes: 309798052, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 924058, }, rss: { bytes: 110838, }, pagefaults: 259073, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:42:10Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 153404, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 279586406, }, usage: { bytes: 214904955, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 1047265, }, rss: { bytes: 91914, }, pagefaults: 302252, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:40:20Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 125613, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 822782853, }, usage: { bytes: 100475044, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 2109932, }, rss: { bytes: 278446, }, pagefaults: 74843, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:40:10Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 100046, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 567160996, }, usage: { bytes: 362826547, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 1986724, }, rss: { bytes: 402801, }, pagefaults: 296495, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, { create: {}, }, { "@timestamp": "2022-06-21T15:38:30Z", kubernetes: { host: "gke-apps-0", node: "gke-apps-0-0", pod: "gke-apps-0-0-0", container: { cpu: { usage: { nanocores: 40018, core: { ns: 12828317850, }, node: { pct: 0.0000277905, }, limit: { pct: 0.0000277905, }, }, }, memory: { available: { bytes: 1062428344, }, usage: { bytes: 265142477, node: { pct: 0.01770037710617187, }, limit: { pct: 0.00009923134671484496, }, }, workingset: { bytes: 2294743, }, rss: { bytes: 340623, }, pagefaults: 224530, majorpagefaults: 0, }, start_time: "2021-03-30T07:59:06Z", name: "container-name-44", }, namespace: "namespace26", }, }, ], }); console.log(response);
PUT /my-data-stream/_bulk?refresh&pipeline=my-timestamp-pipeline {"create": {}} {"@timestamp":"2022-06-21T15:49:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":91153,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":463314616},"usage":{"bytes":307007078,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":585236},"rss":{"bytes":102728},"pagefaults":120901,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:45:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":124501,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":982546514},"usage":{"bytes":360035574,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1339884},"rss":{"bytes":381174},"pagefaults":178473,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:44:50Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":38907,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":862723768},"usage":{"bytes":379572388,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":431227},"rss":{"bytes":386580},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:44:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":86706,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":103266017,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1724908},"rss":{"bytes":105431},"pagefaults":233166,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:44:00Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":150069,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":639054643},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1786511},"rss":{"bytes":189235},"pagefaults":138172,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:42:40Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":82260,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":854735585},"usage":{"bytes":309798052,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":924058},"rss":{"bytes":110838},"pagefaults":259073,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:42:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":153404,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":279586406},"usage":{"bytes":214904955,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1047265},"rss":{"bytes":91914},"pagefaults":302252,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:40:20Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":125613,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":822782853},"usage":{"bytes":100475044,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2109932},"rss":{"bytes":278446},"pagefaults":74843,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:40:10Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":100046,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":567160996},"usage":{"bytes":362826547,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":1986724},"rss":{"bytes":402801},"pagefaults":296495,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}} {"create": {}} {"@timestamp":"2022-06-21T15:38:30Z","kubernetes":{"host":"gke-apps-0","node":"gke-apps-0-0","pod":"gke-apps-0-0-0","container":{"cpu":{"usage":{"nanocores":40018,"core":{"ns":12828317850},"node":{"pct":2.77905e-05},"limit":{"pct":2.77905e-05}}},"memory":{"available":{"bytes":1062428344},"usage":{"bytes":265142477,"node":{"pct":0.01770037710617187},"limit":{"pct":9.923134671484496e-05}},"workingset":{"bytes":2294743},"rss":{"bytes":340623},"pagefaults":224530,"majorpagefaults":0},"start_time":"2021-03-30T07:59:06Z","name":"container-name-44"},"namespace":"namespace26"}}
You can use the search API to check if the documents have been indexed correctly:
resp = client.search( index="my-data-stream", ) print(resp)
response = client.search( index: 'my-data-stream' ) puts response
const response = await client.search({ index: "my-data-stream", }); console.log(response);
GET /my-data-stream/_search
Run the following aggregation on the data to calculate some interesting statistics:
resp = client.search( index="my-data-stream", size=0, aggs={ "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } }, ) print(resp)
response = client.search( index: 'my-data-stream', body: { size: 0, aggregations: { tsid: { terms: { field: '_tsid' }, aggregations: { over_time: { date_histogram: { field: '@timestamp', fixed_interval: '1d' }, aggregations: { min: { min: { field: 'kubernetes.container.memory.usage.bytes' } }, max: { max: { field: 'kubernetes.container.memory.usage.bytes' } }, avg: { avg: { field: 'kubernetes.container.memory.usage.bytes' } } } } } } } } ) puts response
const response = await client.search({ index: "my-data-stream", size: 0, aggs: { tsid: { terms: { field: "_tsid", }, aggs: { over_time: { date_histogram: { field: "@timestamp", fixed_interval: "1d", }, aggs: { min: { min: { field: "kubernetes.container.memory.usage.bytes", }, }, max: { max: { field: "kubernetes.container.memory.usage.bytes", }, }, avg: { avg: { field: "kubernetes.container.memory.usage.bytes", }, }, }, }, }, }, }, }); console.log(response);
GET /my-data-stream/_search { "size": 0, "aggs": { "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } } }
Downsample the TSDS
editA TSDS can’t be downsampled directly. You need to downsample its backing indices instead. You can see the backing index for your data stream by running:
resp = client.indices.get_data_stream( name="my-data-stream", ) print(resp)
response = client.indices.get_data_stream( name: 'my-data-stream' ) puts response
const response = await client.indices.getDataStream({ name: "my-data-stream", }); console.log(response);
GET /_data_stream/my-data-stream
This returns:
{ "data_streams": [ { "name": "my-data-stream", "timestamp_field": { "name": "@timestamp" }, "indices": [ { "index_name": ".ds-my-data-stream-2023.07.26-000001", "index_uuid": "ltOJGmqgTVm4T-Buoe7Acg", "prefer_ilm": true, "managed_by": "Unmanaged" } ], "generation": 1, "status": "GREEN", "next_generation_managed_by": "Unmanaged", "prefer_ilm": true, "template": "my-data-stream-template", "hidden": false, "system": false, "allow_custom_routing": false, "replicated": false, "rollover_on_write": false, "time_series": { "temporal_ranges": [ { "start": "2023-07-26T09:26:42.000Z", "end": "2023-07-26T13:26:42.000Z" } ] } } ] }
Before a backing index can be downsampled, the TSDS needs to be rolled over and the old index needs to be made read-only.
Roll over the TSDS using the rollover API:
resp = client.indices.rollover( alias="my-data-stream", ) print(resp)
response = client.indices.rollover( alias: 'my-data-stream' ) puts response
const response = await client.indices.rollover({ alias: "my-data-stream", }); console.log(response);
POST /my-data-stream/_rollover/
Copy the name of the old_index
from the response. In the following steps,
replace the index name with that of your old_index
.
The old index needs to be set to read-only mode. Run the following request:
resp = client.indices.add_block( index=".ds-my-data-stream-2023.07.26-000001", block="write", ) print(resp)
response = client.indices.add_block( index: '.ds-my-data-stream-2023.07.26-000001', block: 'write' ) puts response
const response = await client.indices.addBlock({ index: ".ds-my-data-stream-2023.07.26-000001", block: "write", }); console.log(response);
PUT /.ds-my-data-stream-2023.07.26-000001/_block/write
Next, use the downsample API to downsample the index, setting the time series interval to one hour:
resp = client.indices.downsample( index=".ds-my-data-stream-2023.07.26-000001", target_index=".ds-my-data-stream-2023.07.26-000001-downsample", config={ "fixed_interval": "1h" }, ) print(resp)
response = client.indices.downsample( index: '.ds-my-data-stream-2023.07.26-000001', target_index: '.ds-my-data-stream-2023.07.26-000001-downsample', body: { fixed_interval: '1h' } ) puts response
const response = await client.indices.downsample({ index: ".ds-my-data-stream-2023.07.26-000001", target_index: ".ds-my-data-stream-2023.07.26-000001-downsample", config: { fixed_interval: "1h", }, }); console.log(response);
POST /.ds-my-data-stream-2023.07.26-000001/_downsample/.ds-my-data-stream-2023.07.26-000001-downsample { "fixed_interval": "1h" }
Now you can modify the data stream, and replace the original index with the downsampled one:
resp = client.indices.modify_data_stream( actions=[ { "remove_backing_index": { "data_stream": "my-data-stream", "index": ".ds-my-data-stream-2023.07.26-000001" } }, { "add_backing_index": { "data_stream": "my-data-stream", "index": ".ds-my-data-stream-2023.07.26-000001-downsample" } } ], ) print(resp)
const response = await client.indices.modifyDataStream({ actions: [ { remove_backing_index: { data_stream: "my-data-stream", index: ".ds-my-data-stream-2023.07.26-000001", }, }, { add_backing_index: { data_stream: "my-data-stream", index: ".ds-my-data-stream-2023.07.26-000001-downsample", }, }, ], }); console.log(response);
POST _data_stream/_modify { "actions": [ { "remove_backing_index": { "data_stream": "my-data-stream", "index": ".ds-my-data-stream-2023.07.26-000001" } }, { "add_backing_index": { "data_stream": "my-data-stream", "index": ".ds-my-data-stream-2023.07.26-000001-downsample" } } ] }
You can now delete the old backing index. But be aware this will delete the original data. Don’t delete the index if you may need the original data in the future.
View the results
editRe-run the earlier search query (note that when querying downsampled indices there are a few nuances to be aware of):
resp = client.search( index="my-data-stream", ) print(resp)
response = client.search( index: 'my-data-stream' ) puts response
const response = await client.search({ index: "my-data-stream", }); console.log(response);
GET /my-data-stream/_search
The TSDS with the new downsampled backing index contains just one document. For
counters, this document would only have the last value. For gauges, the field
type is now aggregate_metric_double
. You see the min
, max
, sum
, and
value_count
statistics based off of the original sampled metrics:
{ "took": 2, "timed_out": false, "_shards": { "total": 4, "successful": 4, "skipped": 0, "failed": 0 }, "hits": { "total": { "value": 1, "relation": "eq" }, "max_score": 1, "hits": [ { "_index": ".ds-my-data-stream-2023.07.26-000001-downsample", "_id": "0eL0wC_4-45SnTNFAAABiZHbD4A", "_score": 1, "_source": { "@timestamp": "2023-07-26T11:00:00.000Z", "_doc_count": 10, "ingest_time": "2023-07-26T11:26:42.715Z", "kubernetes": { "container": { "cpu": { "usage": { "core": { "ns": 12828317850 }, "limit": { "pct": 0.0000277905 }, "nanocores": { "min": 38907, "max": 153404, "sum": 992677, "value_count": 10 }, "node": { "pct": 0.0000277905 } } }, "memory": { "available": { "bytes": { "min": 279586406, "max": 1062428344, "sum": 7101494721, "value_count": 10 } }, "majorpagefaults": 0, "pagefaults": { "min": 74843, "max": 302252, "sum": 2061071, "value_count": 10 }, "rss": { "bytes": { "min": 91914, "max": 402801, "sum": 2389770, "value_count": 10 } }, "usage": { "bytes": { "min": 100475044, "max": 379572388, "sum": 2668170609, "value_count": 10 }, "limit": { "pct": 0.00009923134 }, "node": { "pct": 0.017700378 } }, "workingset": { "bytes": { "min": 431227, "max": 2294743, "sum": 14230488, "value_count": 10 } } }, "name": "container-name-44", "start_time": "2021-03-30T07:59:06.000Z" }, "host": "gke-apps-0", "namespace": "namespace26", "node": "gke-apps-0-0", "pod": "gke-apps-0-0-0" } } } ] } }
Re-run the earlier aggregation. Even though the aggregation runs on the downsampled TSDS that only contains 1 document, it returns the same results as the earlier aggregation on the original TSDS.
resp = client.search( index="my-data-stream", size=0, aggs={ "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } }, ) print(resp)
response = client.search( index: 'my-data-stream', body: { size: 0, aggregations: { tsid: { terms: { field: '_tsid' }, aggregations: { over_time: { date_histogram: { field: '@timestamp', fixed_interval: '1d' }, aggregations: { min: { min: { field: 'kubernetes.container.memory.usage.bytes' } }, max: { max: { field: 'kubernetes.container.memory.usage.bytes' } }, avg: { avg: { field: 'kubernetes.container.memory.usage.bytes' } } } } } } } } ) puts response
const response = await client.search({ index: "my-data-stream", size: 0, aggs: { tsid: { terms: { field: "_tsid", }, aggs: { over_time: { date_histogram: { field: "@timestamp", fixed_interval: "1d", }, aggs: { min: { min: { field: "kubernetes.container.memory.usage.bytes", }, }, max: { max: { field: "kubernetes.container.memory.usage.bytes", }, }, avg: { avg: { field: "kubernetes.container.memory.usage.bytes", }, }, }, }, }, }, }, }); console.log(response);
GET /my-data-stream/_search { "size": 0, "aggs": { "tsid": { "terms": { "field": "_tsid" }, "aggs": { "over_time": { "date_histogram": { "field": "@timestamp", "fixed_interval": "1d" }, "aggs": { "min": { "min": { "field": "kubernetes.container.memory.usage.bytes" } }, "max": { "max": { "field": "kubernetes.container.memory.usage.bytes" } }, "avg": { "avg": { "field": "kubernetes.container.memory.usage.bytes" } } } } } } } }
This example demonstrates how downsampling can dramatically reduce the number of documents stored for time series data, within whatever time boundaries you choose. It’s also possible to perform downsampling on already downsampled data, to further reduce storage and associated costs, as the time series data ages and the data resolution becomes less critical.
The recommended way to downsample a TSDS is with ILM. To learn more, try the Run downsampling with ILM example.