Altering data in your datafeed with runtime fields

edit

If you use datafeeds, you can use runtime fields to alter your data before it is analyzed. You can add an optional runtime_mappings property to your datafeeds, where you can specify field types and scripts that evaluate custom expressions without affecting the indices that you’re retrieving the data from.

If your datafeed defines runtime fields, you can use those fields in your anomaly detection job. For example, you can use the runtime fields in the analysis functions in one or more detectors. Runtime fields can impact search performance based on the computation defined in the runtime script.

Some of these examples use regular expressions. By default, regular expressions are disabled because they circumvent the protection that Painless provides against long running and memory hungry scripts. For more information, see Painless scripting language.

Machine learning analysis is case sensitive. For example, "John" is considered to be different than "john". This is one reason you might consider using scripts that convert your strings to upper or lowercase letters.

The following index APIs create and add content to an index that is used in subsequent examples:

PUT /my-index-000001
{
  "mappings":{
    "properties": {
      "@timestamp": { "type": "date" },
      "aborted_count": { "type": "long" },
      "another_field": { "type": "keyword" }, 
      "clientip": { "type": "keyword" },
      "coords": {
        "properties": {
          "lat": { "type": "keyword" },
          "lon": { "type": "keyword" }
        }
      },
      "error_count": { "type": "long" },
      "query": { "type": "keyword" },
      "some_field": { "type": "keyword" },
      "tokenstring1":{ "type":"keyword" },
      "tokenstring2":{ "type":"keyword" },
      "tokenstring3":{ "type":"keyword" }
    }
  }
}

PUT /my-index-000001/_doc/1
{
  "@timestamp":"2017-03-23T13:00:00",
  "error_count":36320,
  "aborted_count":4156,
  "some_field":"JOE",
  "another_field":"SMITH  ",
  "tokenstring1":"foo-bar-baz",
  "tokenstring2":"foo bar baz",
  "tokenstring3":"foo-bar-19",
  "query":"www.ml.elastic.co",
  "clientip":"123.456.78.900",
  "coords": {
    "lat" : 41.44,
    "lon":90.5
  }
}

In this example, string fields are mapped as keyword fields to support aggregation. If you want both a full text (text) and a keyword (keyword) version of the same field, use multi-fields. For more information, see fields.

Example 1: Adding two numerical fields.

PUT _ml/anomaly_detectors/test1
{
  "analysis_config":{
    "bucket_span": "10m",
    "detectors":[
      {
        "function":"mean",
        "field_name": "total_error_count" 
      }
    ]
  },
  "data_description": {
    "time_field":"@timestamp"
  }
}

PUT _ml/datafeeds/datafeed-test1
{
  "job_id": "test1",
  "indices": [
    "my-index-000001"
  ],
  "runtime_mappings": {
    "total_error_count": { 
      "type": "long",
      "script": {
        "source": "emit(doc['error_count'].value + doc['aborted_count'].value)"
      }
    }
  }
}

A runtime field named total_error_count is referenced in the detector within the job.

The runtime field is defined in the datafeed.

This test1 anomaly detection job contains a detector that uses a runtime field in a mean analysis function. The datafeed-test1 datafeed defines the runtime field. It contains a script that adds two fields in the document to produce a "total" error count.

The syntax for the runtime_mappings property is identical to that used by Elasticsearch. For more information, see Runtime fields.

You can preview the contents of the datafeed by using the following API:

GET _ml/datafeeds/datafeed-test1/_preview

In this example, the API returns the following results, which contain a sum of the error_count and aborted_count values:

[
  {
    "@timestamp": 1490274000000,
    "total_error_count": 40476
  }
]

This example demonstrates how to use runtime fields, but it contains insufficient data to generate meaningful results.

You can alternatively use Kibana to create an advanced anomaly detection job that uses runtime fields. To add the runtime_mappings property to your datafeed, you must use the Edit JSON tab. For example:

Using runtime_mappings in datafeed config via Kibana

Example 2: Concatenating strings.

PUT _ml/anomaly_detectors/test2
{
  "analysis_config":{
    "bucket_span": "10m",
    "detectors":[
      {
        "function":"low_info_content",
        "field_name":"my_runtime_field" 
      }
    ]
  },
  "data_description": {
    "time_field":"@timestamp"
  }
}

PUT _ml/datafeeds/datafeed-test2
{
  "job_id": "test2",
  "indices": ["my-index-000001"],
  "runtime_mappings": {
    "my_runtime_field": {
      "type": "keyword",
      "script": {
        "source": "emit(doc['some_field'].value + '_' + doc['another_field'].value)" 
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test2/_preview

The runtime field has a generic name in this case, since it is used for various tests in the examples.

The runtime field uses the plus (+) operator to concatenate strings.

The preview datafeed API returns the following results, which show that "JOE" and "SMITH " have been concatenated and an underscore was added:

[
  {
    "@timestamp": 1490274000000,
    "my_runtime_field": "JOE_SMITH  "
  }
]

Example 3: Trimming strings.

POST _ml/datafeeds/datafeed-test2/_update
{
  "runtime_mappings": {
    "my_runtime_field": {
      "type": "keyword",
      "script": {
        "source": "emit(doc['another_field'].value.trim())" 
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test2/_preview

This runtime field uses the trim() function to trim extra white space from a string.

The preview datafeed API returns the following results, which show that "SMITH " has been trimmed to "SMITH":

[
  {
    "@timestamp": 1490274000000,
    "my_script_field": "SMITH"
  }
]

Example 4: Converting strings to lowercase.

POST _ml/datafeeds/datafeed-test2/_update
{
  "runtime_mappings": {
    "my_runtime_field": {
      "type": "keyword",
      "script": {
        "source": "emit(doc['some_field'].value.toLowerCase())" 
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test2/_preview

This runtime field uses the toLowerCase function to convert a string to all lowercase letters. Likewise, you can use the toUpperCase{} function to convert a string to uppercase letters.

The preview datafeed API returns the following results, which show that "JOE" has been converted to "joe":

[
  {
    "@timestamp": 1490274000000,
    "my_script_field": "joe"
  }
]

Example 5: Converting strings to mixed case formats.

POST _ml/datafeeds/datafeed-test2/_update
{
  "runtime_mappings": {
    "my_runtime_field": {
      "type": "keyword",
      "script": {
        "source": "emit(doc['some_field'].value.substring(0, 1).toUpperCase() + doc['some_field'].value.substring(1).toLowerCase())" 
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test2/_preview

This runtime field is a more complicated example of case manipulation. It uses the subString() function to capitalize the first letter of a string and converts the remaining characters to lowercase.

The preview datafeed API returns the following results, which show that "JOE" has been converted to "Joe":

[
  {
    "@timestamp": 1490274000000,
    "my_script_field": "Joe"
  }
]

Example 6: Replacing tokens.

POST _ml/datafeeds/datafeed-test2/_update
{
  "runtime_mappings": {
    "my_runtime_field": {
      "type": "keyword",
      "script": {
        "source": "emit(/\\s/.matcher(doc['tokenstring2'].value).replaceAll('_'))" 
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test2/_preview

This script uses regular expressions to replace white space with underscores.

The preview datafeed API returns the following results, which show that "foo bar baz" has been converted to "foo_bar_baz":

[
  {
    "@timestamp": 1490274000000,
    "my_script_field": "foo_bar_baz"
  }
]

Example 7: Regular expression matching and concatenation.

POST _ml/datafeeds/datafeed-test2/_update
{
  "runtime_mappings": {
    "my_runtime_field": {
      "type": "keyword",
      "script": {
        "source": "def m = /(.*)-bar-([0-9][0-9])/.matcher(doc['tokenstring3'].value); emit(m.find() ? m.group(1) + '_' + m.group(2) : '');" 
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test2/_preview

This script looks for a specific regular expression pattern and emits the matched groups as a concatenated string. If no match is found, it emits an empty string.

The preview datafeed API returns the following results, which show that "foo-bar-19" has been converted to "foo_19":

[
  {
    "@timestamp": 1490274000000,
    "my_script_field": "foo_19"
  }
]

Example 8: Transforming geo_point data.

PUT _ml/anomaly_detectors/test3
{
  "analysis_config":{
    "bucket_span": "10m",
    "detectors":[
      {
        "function":"lat_long",
        "field_name": "my_coordinates"
      }
    ]
  },
  "data_description": {
    "time_field":"@timestamp"
  }
}

PUT _ml/datafeeds/datafeed-test3
{
  "job_id": "test3",
  "indices": ["my-index-000001"],
  "runtime_mappings": {
    "my_coordinates": {
      "type": "keyword",
      "script": {
        "source": "emit(doc['coords.lat'].value + ',' + doc['coords.lon'].value)"
      }
    }
  }
}

GET _ml/datafeeds/datafeed-test3/_preview

In Elasticsearch, location data can be stored in geo_point fields but this data type is not supported natively in machine learning analytics. This example of a runtime field transforms the data into an appropriate format. For more information, see Geographic functions.

The preview datafeed API returns the following results, which show that 41.44 and 90.5 have been combined into "41.44,90.5":

[
  {
    "@timestamp": 1490274000000,
    "my_coordinates": "41.44,90.5"
  }
]