Update v8.5.2
editUpdate v8.5.2
editThis section lists all updates associated with version 8.5.2 of the Fleet integration Prebuilt Security Detection Rules.
Rule | Description | Status | Version |
---|---|---|---|
Google Workspace Drive Encryption Key(s) Accessed from Anonymous User |
Detects when an external (anonymous) user has viewed, copied or downloaded an encryption key file from a Google Workspace drive. Adversaries may gain access to encryption keys stored in private drives from rogue access links that do not have an expiration. Access to encryption keys may allow adversaries to access sensitive data or authenticate on behalf of users. |
new |
1 |
Detects an external Google Workspace user account being added to an existing group. Adversaries may add external user accounts as a means to intercept shared files or emails with that specific group. |
new |
1 |
|
Detects when a user copies a Google spreadsheet, form, document or script from an external drive. An adversary may send a phishing email to the victim with a Drive object link where "copy" is included in the URI, thus copying the object to the victim’s drive. |
new |
1 |
|
Detects when a previously suspended user’s account is renewed in Google Workspace. An adversary may renew a suspended user account to maintain access to the Google Workspace organization with a valid account. |
new |
1 |
|
Identifies the execution of the unshadow utility which is part of John the Ripper, a password-cracking tool on the host machine. Malicious actors can use the utility to retrieve the combined contents of the /etc/shadow and /etc/password files. Using the combined file generated from the utility, the malicious threat actors can use them as input for password-cracking utilities or prepare themselves for future operations by gathering credential information of the victim. |
new |
1 |
|
Adversaries may attempt to disable the iptables or firewall service in an attempt to affect how a host is allowed to receive or send network traffic. |
new |
1 |
|
Identifies service creation events of common mining services, possibly indicating the infection of a system with a cryptominer. |
new |
1 |
|
The /etc/rc.local file is used to start custom applications, services, scripts or commands during start-up. The rc.local file has mostly been replaced by Systemd, however through the "systemd-rc-local-generator", rc.local files can be converted to services that run at boot. Adversaries may alter rc.local to execute malicious code at start-up, and gain persistence onto the system. |
new |
1 |
|
Identifies execution of common Microsoft Office applications to launch an Office Add-In from a suspicious path or with an unusual parent process. This may indicate an attempt to get initial access via a malicious phishing MS Office Add-In. |
new |
1 |
|
Adversaries may pass the hash using stolen password hashes to move laterally within an environment, bypassing normal system access controls. Pass the hash (PtH) is a method of authenticating as a user without having access to the user’s cleartext password. |
new |
1 |
|
Identifies the creation of an AWS log trail that specifies the settings for delivery of log data. |
update |
103 |
|
Identifies a high number of failed attempts to assume an AWS Identity and Access Management (IAM) role. IAM roles are used to delegate access to users or services. An adversary may attempt to enumerate IAM roles in order to determine if a role exists before attempting to assume or hijack the discovered role. |
update |
105 |
|
Identifies the addition of a user to a specified group in AWS Identity and Access Management (IAM). |
update |
105 |
|
Identifies a high number of failed authentication attempts to the AWS management console for the Root user identity. An adversary may attempt to brute force the password for the Root user identity, as it has complete access to all services and resources for the AWS account. |
update |
102 |
|
An adversary may attempt to access the secrets in secrets manager to steal certificates, credentials, or other sensitive material |
update |
105 |
|
Identifies the deletion of an AWS log trail. An adversary may delete trails in an attempt to evade defenses. |
update |
105 |
|
Identifies suspending the recording of AWS API calls and log file delivery for the specified trail. An adversary may suspend trails in an attempt to evade defenses. |
update |
105 |
|
Identifies the deletion of an AWS CloudWatch alarm. An adversary may delete alarms in an attempt to evade defenses. |
update |
105 |
|
Identifies attempts to delete an AWS Config Service resource. An adversary may tamper with Config services in order to reduce visibility into the security posture of an account and / or its workload instances. |
update |
105 |
|
Identifies an AWS configuration change to stop recording a designated set of resources. |
update |
102 |
|
Identifies the deletion of one or more flow logs in AWS Elastic Compute Cloud (EC2). An adversary may delete flow logs in an attempt to evade defenses. |
update |
105 |
|
Identifies the deletion of an Amazon Elastic Compute Cloud (EC2) network access control list (ACL) or one of its ingress/egress entries. |
update |
102 |
|
Identifies when an ElastiCache security group has been created. |
update |
102 |
|
Identifies when an ElastiCache security group has been modified or deleted. |
update |
102 |
|
Identifies the deletion of an Amazon GuardDuty detector. Upon deletion, GuardDuty stops monitoring the environment and all existing findings are lost. |
update |
102 |
|
Identifies the deletion of various Amazon Simple Storage Service (S3) bucket configuration components. |
update |
103 |
|
Identifies the deletion of a specified AWS Web Application Firewall (WAF) access control list. |
update |
102 |
|
Identifies the deletion of a specified AWS Web Application Firewall (WAF) rule or rule group. |
update |
102 |
|
Identifies potential Traffic Mirroring in an Amazon Elastic Compute Cloud (EC2) instance. Traffic Mirroring is an Amazon VPC feature that you can use to copy network traffic from an Elastic network interface. This feature can potentially be abused to exfiltrate sensitive data from unencrypted internal traffic. |
update |
102 |
|
An attempt was made to modify AWS EC2 snapshot attributes. Snapshots are sometimes shared by threat actors in order to exfiltrate bulk data from an EC2 fleet. If the permissions were modified, verify the snapshot was not shared with an unauthorized or unexpected AWS account. |
update |
105 |
|
Identifies an attempt to export an AWS EC2 instance. A virtual machine (VM) export may indicate an attempt to extract or exfiltrate information. |
update |
102 |
|
Identifies the export of an Amazon Relational Database Service (RDS) Aurora database snapshot. |
update |
102 |
|
Identifies when an attempt was made to restore an RDS Snapshot. Snapshots are sometimes shared by threat actors in order to exfiltrate bulk data or evade detection after performing malicious activities. If the permissions were modified, verify if the snapshot was shared with an unauthorized or unexpected AWS account. |
update |
102 |
|
Identifies when a user has disabled or deleted an EventBridge rule. This activity can result in an unintended loss of visibility in applications or a break in the flow with other AWS services. |
update |
102 |
|
Identifies an update to an AWS log trail setting that specifies the delivery of log files. |
update |
105 |
|
Identifies the deletion of a specified AWS CloudWatch log group. When a log group is deleted, all the archived log events associated with the log group are also permanently deleted. |
update |
105 |
|
Identifies the deletion of an AWS CloudWatch log stream, which permanently deletes all associated archived log events with the stream. |
update |
105 |
|
Identifies disabling of Amazon Elastic Block Store (EBS) encryption by default in the current region. Disabling encryption by default does not change the encryption status of your existing volumes. |
update |
102 |
|
Detects when an EFS File System or Mount is deleted. An adversary could break any file system using the mount target that is being deleted, which might disrupt instances or applications using those mounts. The mount must be deleted prior to deleting the File System, or the adversary will be unable to delete the File System. |
update |
102 |
|
Identifies the deactivation of a specified multi-factor authentication (MFA) device and removes it from association with the user name for which it was originally enabled. In AWS Identity and Access Management (IAM), a device must be deactivated before it can be deleted. |
update |
105 |
|
Identifies the deletion of a specified AWS Identity and Access Management (IAM) resource group. Deleting a resource group does not delete resources that are members of the group; it only deletes the group structure. |
update |
102 |
|
AWS KMS Customer Managed Key Disabled or Scheduled for Deletion |
Identifies attempts to disable or schedule the deletion of an AWS KMS Customer Managed Key (CMK). Deleting an AWS KMS key is destructive and potentially dangerous. It deletes the key material and all metadata associated with the KMS key and is irreversible. After a KMS key is deleted, the data that was encrypted under that KMS key can no longer be decrypted, which means that data becomes unrecoverable. |
update |
2 |
Identifies the deletion of an Amazon Relational Database Service (RDS) Security group. |
update |
102 |
|
Identifies the deletion of an Amazon Relational Database Service (RDS) Aurora database cluster, global database cluster, or database instance. |
update |
102 |
|
Identifies that an Amazon Relational Database Service (RDS) cluster or instance has been stopped. |
update |
102 |
|
Identifies a successful login to the AWS Management Console by the Root user. |
update |
105 |
|
Identifies AWS IAM password recovery requests. An adversary may attempt to gain unauthorized AWS access by abusing password recovery mechanisms. |
update |
102 |
|
Identifies the execution of commands and scripts via System Manager. Execution methods such as RunShellScript, RunPowerShellScript, and alike can be abused by an authenticated attacker to install a backdoor or to interact with a compromised instance via reverse-shell using system only commands. |
update |
105 |
|
A machine learning job detected a significant spike in the rate of a particular error in the CloudTrail messages. Spikes in error messages may accompany attempts at privilege escalation, lateral movement, or discovery. |
update |
104 |
|
A machine learning job detected an unusual error in a CloudTrail message. These can be byproducts of attempted or successful persistence, privilege escalation, defense evasion, discovery, lateral movement, or collection. |
update |
104 |
|
A machine learning job detected AWS command activity that, while not inherently suspicious or abnormal, is sourcing from a geolocation (city) that is unusual for the command. This can be the result of compromised credentials or keys being used by a threat actor in a different geography than the authorized user(s). |
update |
104 |
|
A machine learning job detected AWS command activity that, while not inherently suspicious or abnormal, is sourcing from a geolocation (country) that is unusual for the command. This can be the result of compromised credentials or keys being used by a threat actor in a different geography than the authorized user(s). |
update |
104 |
|
A machine learning job detected an AWS API command that, while not inherently suspicious or abnormal, is being made by a user context that does not normally use the command. This can be the result of compromised credentials or keys as someone uses a valid account to persist, move laterally, or exfiltrate data. |
update |
104 |
|
Identifies the creation of an AWS Elastic Compute Cloud (EC2) network access control list (ACL) or an entry in a network ACL with a specified rule number. |
update |
102 |
|
Identifies a change to an AWS Security Group Configuration. A security group is like a virtual firewall, and modifying configurations may allow unauthorized access. Threat actors may abuse this to establish persistence, exfiltrate data, or pivot in an AWS environment. |
update |
102 |
|
Identifies the creation of a group in AWS Identity and Access Management (IAM). Groups specify permissions for multiple users. Any user in a group automatically has the permissions that are assigned to the group. |
update |
102 |
|
Identifies the creation of a new Amazon Relational Database Service (RDS) Aurora DB cluster or global database spread across multiple regions. |
update |
102 |
|
Identifies the creation of an Amazon Relational Database Service (RDS) Security group. |
update |
102 |
|
Identifies the creation of an Amazon Relational Database Service (RDS) Aurora database instance. |
update |
102 |
|
Identifies the creation of an Amazon Redshift cluster. Unexpected creation of this cluster by a non-administrative user may indicate a permission or role issue with current users. If unexpected, the resource may not properly be configured and could introduce security vulnerabilities. |
update |
102 |
|
Identifies when a transfer lock was removed from a Route 53 domain. It is recommended to refrain from performing this action unless intending to transfer the domain to a different registrar. |
update |
102 |
|
Identifies when a request has been made to transfer a Route 53 domain to another AWS account. |
update |
102 |
|
Identifies when a Route53 private hosted zone has been associated with VPC. |
update |
102 |
|
Identifies when an AWS Route Table has been created. |
update |
102 |
|
Identifies when an AWS Route Table has been modified or deleted. |
update |
102 |
|
Identifies when SAML activity has occurred in AWS. An adversary could manipulate SAML to maintain access to the target. |
update |
102 |
|
Identifies attempts to login to AWS as the root user without using multi-factor authentication (MFA). Amazon AWS best practices indicate that the root user should be protected by MFA. |
update |
105 |
|
Identifies the use of AssumeRole. AssumeRole returns a set of temporary security credentials that can be used to access AWS resources. An adversary could use those credentials to move laterally and escalate privileges. |
update |
102 |
|
Identifies the suspicious use of GetSessionToken. Tokens could be created and used by attackers to move laterally and escalate privileges. |
update |
102 |
|
Identifies attempts to modify an AWS IAM Assume Role Policy. An adversary may attempt to modify the AssumeRolePolicy of a misconfigured role in order to gain the privileges of that role. |
update |
105 |
|
Identifies the creation of a subscription in Google Cloud Platform (GCP). In GCP, the publisher-subscriber relationship (Pub/Sub) is an asynchronous messaging service that decouples event-producing and event-processing services. A subscription is a named resource representing the stream of messages to be delivered to the subscribing application. |
update |
104 |
|
Identifies the creation of a topic in Google Cloud Platform (GCP). In GCP, the publisher-subscriber relationship (Pub/Sub) is an asynchronous messaging service that decouples event-producing and event-processing services. A topic is used to forward messages from publishers to subscribers. |
update |
104 |
|
Identifies when a firewall rule is created in Google Cloud Platform (GCP) for Virtual Private Cloud (VPC) or App Engine. These firewall rules can be configured to allow or deny connections to or from virtual machine (VM) instances or specific applications. An adversary may create a new firewall rule in order to weaken their target’s security controls and allow more permissive ingress or egress traffic flows for their benefit. |
update |
103 |
|
Identifies when a firewall rule is deleted in Google Cloud Platform (GCP) for Virtual Private Cloud (VPC) or App Engine. These firewall rules can be configured to allow or deny connections to or from virtual machine (VM) instances or specific applications. An adversary may delete a firewall rule in order to weaken their target’s security controls. |
update |
103 |
|
Identifies when a firewall rule is modified in Google Cloud Platform (GCP) for Virtual Private Cloud (VPC) or App Engine. These firewall rules can be modified to allow or deny connections to or from virtual machine (VM) instances or specific applications. An adversary may modify an existing firewall rule in order to weaken their target’s security controls and allow more permissive ingress or egress traffic flows for their benefit. |
update |
103 |
|
Identifies a Logging bucket deletion in Google Cloud Platform (GCP). Log buckets are containers that store and organize log data. A deleted bucket stays in a pending state for 7 days, and Logging continues to route logs to the bucket during that time. To stop routing logs to a deleted bucket, you can delete the log sinks that have the bucket as their destination, or modify the filter for the sinks to stop it from routing logs to the deleted bucket. An adversary may delete a log bucket to evade detection. |
update |
103 |
|
Identifies a Logging sink deletion in Google Cloud Platform (GCP). Every time a log entry arrives, Logging compares the log entry to the sinks in that resource. Each sink whose filter matches the log entry writes a copy of the log entry to the sink’s export destination. An adversary may delete a Logging sink to evade detection. |
update |
103 |
|
Identifies the deletion of a subscription in Google Cloud Platform (GCP). In GCP, the publisher-subscriber relationship (Pub/Sub) is an asynchronous messaging service that decouples event-producing and event-processing services. A subscription is a named resource representing the stream of messages to be delivered to the subscribing application. |
update |
103 |
|
Identifies the deletion of a topic in Google Cloud Platform (GCP). In GCP, the publisher-subscriber relationship (Pub/Sub) is an asynchronous messaging service that decouples event-producing and event-processing services. A publisher application creates and sends messages to a topic. Deleting a topic can interrupt message flow in the Pub/Sub pipeline. |
update |
103 |
|
Identifies when the configuration is modified for a storage bucket in Google Cloud Platform (GCP). An adversary may modify the configuration of a storage bucket in order to weaken the security controls of their target’s environment. |
update |
103 |
|
Identifies when the Identity and Access Management (IAM) permissions are modified for a Google Cloud Platform (GCP) storage bucket. An adversary may modify the permissions on a storage bucket to weaken their target’s security controls or an administrator may inadvertently modify the permissions, which could lead to data exposure or loss. |
update |
103 |
|
Identifies when a Virtual Private Cloud (VPC) network is deleted in Google Cloud Platform (GCP). A VPC network is a virtual version of a physical network within a GCP project. Each VPC network has its own subnets, routes, and firewall, as well as other elements. An adversary may delete a VPC network in order to disrupt their target’s network and business operations. |
update |
103 |
|
Identifies when a virtual private cloud (VPC) route is created in Google Cloud Platform (GCP). Google Cloud routes define the paths that network traffic takes from a virtual machine (VM) instance to other destinations. These destinations can be inside a Google VPC network or outside it. An adversary may create a route in order to impact the flow of network traffic in their target’s cloud environment. |
update |
103 |
|
Identifies when a Virtual Private Cloud (VPC) route is deleted in Google Cloud Platform (GCP). Google Cloud routes define the paths that network traffic takes from a virtual machine (VM) instance to other destinations. These destinations can be inside a Google VPC network or outside it. An adversary may delete a route in order to impact the flow of network traffic in their target’s cloud environment. |
update |
103 |
|
Identifies a modification to a Logging sink in Google Cloud Platform (GCP). Logging compares the log entry to the sinks in that resource. Each sink whose filter matches the log entry writes a copy of the log entry to the sink’s export destination. An adversary may update a Logging sink to exfiltrate logs to a different export destination. |
update |
103 |
|
Identifies an Identity and Access Management (IAM) role deletion in Google Cloud Platform (GCP). A role contains a set of permissions that allows you to perform specific actions on Google Cloud resources. An adversary may delete an IAM role to inhibit access to accounts utilized by legitimate users. |
update |
103 |
|
Identifies when a service account is deleted in Google Cloud Platform (GCP). A service account is a special type of account used by an application or a virtual machine (VM) instance, not a person. Applications use service accounts to make authorized API calls, authorized as either the service account itself, or as G Suite or Cloud Identity users through domain-wide delegation. An adversary may delete a service account in order to disrupt their target’s business operations. |
update |
103 |
|
Identifies when a service account is disabled in Google Cloud Platform (GCP). A service account is a special type of account used by an application or a virtual machine (VM) instance, not a person. Applications use service accounts to make authorized API calls, authorized as either the service account itself, or as G Suite or Cloud Identity users through domain-wide delegation. An adversary may disable a service account in order to disrupt to disrupt their target’s business operations. |
update |
103 |
|
Identifies when a Google Cloud Platform (GCP) storage bucket is deleted. An adversary may delete a storage bucket in order to disrupt their target’s business operations. |
update |
103 |
|
Identifies an Identity and Access Management (IAM) custom role creation in Google Cloud Platform (GCP). Custom roles are user-defined, and allow for the bundling of one or more supported permissions to meet specific needs. Custom roles will not be updated automatically and could lead to privilege creep if not carefully scrutinized. |
update |
103 |
|
Identifies the deletion of an Identity and Access Management (IAM) service account key in Google Cloud Platform (GCP). Each service account is associated with two sets of public/private RSA key pairs that are used to authenticate. If a key is deleted, the application will no longer be able to access Google Cloud resources using that key. A security best practice is to rotate your service account keys regularly. |
update |
103 |
|
Identifies when a new key is created for a service account in Google Cloud Platform (GCP). A service account is a special type of account used by an application or a virtual machine (VM) instance, not a person. Applications use service accounts to make authorized API calls, authorized as either the service account itself, or as G Suite or Cloud Identity users through domain-wide delegation. If private keys are not tracked and managed properly, they can present a security risk. An adversary may create a new key for a service account in order to attempt to abuse the permissions assigned to that account and evade detection. |
update |
103 |
|
Identifies when a new service account is created in Google Cloud Platform (GCP). A service account is a special type of account used by an application or a virtual machine (VM) instance, not a person. Applications use service accounts to make authorized API calls, authorized as either the service account itself, or as G Suite or Cloud Identity users through domain-wide delegation. If service accounts are not tracked and managed properly, they can present a security risk. An adversary may create a new service account to use during their operations in order to avoid using a standard user account and attempt to evade detection. |
update |
103 |
|
Detects when an attacker abuses the Multi-Factor authentication mechanism by repeatedly issuing login requests until the user eventually accepts the Okta push notification. An adversary may attempt to bypass the Okta MFA policies configured for an organization to obtain unauthorized access. |
update |
102 |
|
Identifies an outbound network connection attempt followed by a session id change as the root user by the same process entity. This particular instantiation of a network connection is abnormal and should be investigated as it may indicate a potential reverse shell activity via a privileged process. |
update |
102 |
|
Iodine is a tool for tunneling Internet protocol version 4 (IPV4) traffic over the DNS protocol to circumvent firewalls, network security groups, and network access lists while evading detection. |
update |
103 |
|
Identifies the execution of the EarthWorm tunneler. Adversaries may tunnel network communications to and from a victim system within a separate protocol to avoid detection and network filtering, or to enable access to otherwise unreachable systems. |
update |
103 |
|
Identifies multiple SSH login failures followed by a successful one from the same source address. Adversaries can attempt to login into multiple users with a common or known password to gain access to accounts. |
update |
4 |
|
Identifies the use of a compression utility to collect known files containing sensitive information, such as credentials and system configurations. |
update |
103 |
|
Identifies multiple consecutive login failures targeting an user account from the same source address and within a short time interval. Adversaries will often brute force login attempts across multiple users with a common or known password, in an attempt to gain access to accounts. |
update |
4 |
|
Identifies multiple consecutive login failures targeting a root user account from the same source address and within a short time interval. Adversaries will often brute force login attempts on privileged accounts with a common or known password, in an attempt to gain privileged access to systems. |
update |
4 |
|
Identifies a Secure Shell (SSH) client or server process creating or writing to a known SSH backdoor log file. Adversaries may modify SSH related binaries for persistence or credential access via patching sensitive functions to enable unauthorized access or to log SSH credentials for exfiltration. |
update |
103 |
|
Adversaries may attempt to disable the syslog service in an attempt to an attempt to disrupt event logging and evade detection by security controls. |
update |
103 |
|
Adversaries may encode/decode data in an attempt to evade detection by host- or network-based security controls. |
update |
103 |
|
Detects a file being made immutable using the chattr binary. Making a file immutable means it cannot be deleted or renamed, no link can be created to this file, most of the file’s metadata can not be modified, and the file can not be opened in write mode. Threat actors will commonly utilize this to prevent tampering or modification of their malicious files or any system files they have modified for purposes of persistence (e.g .ssh, /etc/passwd, etc.). |
update |
103 |
|
Identifies potential attempts to disable Security-Enhanced Linux (SELinux), which is a Linux kernel security feature to support access control policies. Adversaries may disable security tools to avoid possible detection of their tools and activities. |
update |
103 |
|
Malware or other files dropped or created on a system by an adversary may leave traces behind as to what was done within a network and how. Adversaries may remove these files over the course of an intrusion to keep their footprint low or remove them at the end as part of the post-intrusion cleanup process. |
update |
103 |
|
Identifies file permission modifications in common writable directories by a non-root user. Adversaries often drop files or payloads into a writable directory and change permissions prior to execution. |
update |
102 |
|
Users can mark specific files as hidden simply by putting a "." as the first character in the file or folder name. Adversaries can use this to their advantage to hide files and folders on the system for persistence and defense evasion. This rule looks for hidden files or folders in common writable directories. |
update |
102 |
|
Identifies the creation of a hidden shared object (.so) file. Users can mark specific files as hidden simply by putting a "." as the first character in the file or folder name. Adversaries can use this to their advantage to hide files and folders on the system for persistence and defense evasion. |
update |
103 |
|
Kernel modules are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the functionality of the kernel without the need to reboot the system. This rule identifies attempts to remove a kernel module. |
update |
103 |
|
Identifies the deletion of sensitive Linux system logs. This may indicate an attempt to evade detection or destroy forensic evidence on a system. |
update |
104 |
|
Loadable Kernel Modules (or LKMs) are pieces of code that can be loaded and unloaded into the kernel upon demand. They extend the functionality of the kernel without the need to reboot the system. This identifies attempts to enumerate information about a kernel module. |
update |
103 |
|
Hping ran on a Linux host. Hping is a FOSS command-line packet analyzer and has the ability to construct network packets for a wide variety of network security testing applications, including scanning and firewall auditing. |
update |
103 |
|
Nping ran on a Linux host. Nping is part of the Nmap tool suite and has the ability to construct raw packets for a wide variety of security testing applications, including denial of service testing. |
update |
103 |
|
An adversary may attempt to get detailed information about the operating system and hardware. This rule identifies common locations used to discover virtual machine hardware by a non-root user. This technique has been used by the Pupy RAT and other malware. |
update |
103 |
|
Identifies the creation of a Process ID (PID), lock or reboot file created in temporary file storage paradigm (tmpfs) directory /var/run. On Linux, the PID files typically hold the process ID to track previous copies running and manage other tasks. Certain Linux malware use the /var/run directory for holding data, executables and other tasks, disguising itself or these files as legitimate PID files. |
update |
105 |
|
A netcat process is engaging in network activity on a Linux host. Netcat is often used as a persistence mechanism by exporting a reverse shell or by serving a shell on a listening port. Netcat is also sometimes used for data exfiltration. |
update |
105 |
|
Identifies when a terminal (tty) is spawned via Perl. Attackers may upgrade a simple reverse shell to a fully interactive tty after obtaining initial access to a host. |
update |
103 |
|
Identifies a new process starting from a process ID (PID), lock or reboot file within the temporary file storage paradigm (tmpfs) directory /var/run directory. On Linux, the PID files typically hold the process ID to track previous copies running and manage other tasks. Certain Linux malware use the /var/run directory for holding data, executables and other tasks, disguising itself or these files as legitimate PID files. |
update |
104 |
|
Identifies the execution of a binary by root in Linux shared memory directories: (/dev/shm/, /run/shm/, /var/run/, /var/lock/). This activity is to be considered highly abnormal and should be investigated. Threat actors have placed executables used for persistence on high-uptime servers in these directories as system backdoors. |
update |
104 |
|
Identifies when a terminal (tty) is spawned via Python. Attackers may upgrade a simple reverse shell to a fully interactive tty after obtaining initial access to a host. |
update |
103 |
|
Identifies a reverse shell via the abuse of named pipes on Linux with the help of OpenSSL or Netcat. First in, first out (FIFO) files are special files for reading and writing to by Linux processes. For this to work, a named pipe is created and passed to a Linux shell where the use of a network connection tool such as Netcat or OpenSSL has been established. The stdout and stderr are captured in the named pipe from the network connection and passed back to the shell for execution. |
update |
4 |
|
Identifies Linux binary(s) abuse to breakout of restricted shells or environments by spawning an interactive system shell. The linux utility(s) activity of spawning shell is not a standard use of the binary for a user or system administrator. It may indicates an attempt to improve the capabilities or stability of an adversary access. |
update |
103 |
|
Detects when the tc (transmission control) binary is utilized to set a BPF (Berkeley Packet Filter) on a network interface. Tc is used to configure Traffic Control in the Linux kernel. It can shape, schedule, police and drop traffic. A threat actor can utilize tc to set a bpf filter on an interface for the purpose of manipulating the incoming traffic. This technique is not at all common and should indicate abnormal, suspicious or malicious activity. |
update |
103 |
|
This rule identifies a high number (10) of process terminations via pkill from the same host within a short time period. |
update |
105 |
|
Telnet provides a command line interface for communication with a remote device or server. This rule identifies Telnet network connections to publicly routable IP addresses. |
update |
102 |
|
Telnet provides a command line interface for communication with a remote device or server. This rule identifies Telnet network connections to non-publicly routable IP addresses. |
update |
102 |
|
Detects the use of the chkconfig binary to manually add a service for management by chkconfig. Threat actors may utilize this technique to maintain persistence on a system. When a new service is added, chkconfig ensures that the service has either a start or a kill entry in every runlevel and when the system is rebooted the service file added will run providing long-term persistence. |
update |
103 |
|
Adversaries may modify SSH related binaries for persistence or credential access by patching sensitive functions to enable unauthorized access or by logging SSH credentials for exfiltration. |
update |
103 |
|
Detects the copying of the Linux dynamic loader binary and subsequent file creation for the purpose of creating a backup copy. This technique was seen recently being utilized by Linux malware prior to patching the dynamic loader in order to inject and preload a malicious shared object file. This activity should never occur and if it does then it should be considered highly suspicious or malicious. |
update |
102 |
|
Detects the manual creation of files in specific etc directories, via user root, used by Linux malware to persist and elevate privileges on compromised systems. File creation in these directories should not be entirely common and could indicate a malicious binary or script installing persistence for long term access. |
update |
104 |
|
Detects the use of the insmod binary to load a Linux kernel object file. Threat actors can use this binary, given they have root privileges, to load a rootkit on a system providing them with complete control and the ability to hide from security products. Manually loading a kernel module in this manner should not be at all common and can indicate suspcious or malicious behavior. |
update |
103 |
|
Persistence via KDE AutoStart Script or Desktop File Modification |
Identifies the creation or modification of a K Desktop Environment (KDE) AutoStart script or desktop file that will execute upon each user logon. Adversaries may abuse this method for persistence. |
update |
103 |
Identifies suspicious commands executed via a web server, which may suggest a vulnerability and remote shell access. |
update |
105 |
|
Identifies modification of the dynamic linker preload shared object (ld.so.preload). Adversaries may execute malicious payloads by hijacking the dynamic linker used to load libraries. |
update |
103 |
|
Identifies an attempt to exploit a local privilege escalation in polkit pkexec (CVE-2021-4034) via unsecure environment variable injection. Successful exploitation allows an unprivileged user to escalate to the root user. |
update |
103 |
|
Identifies access to the /etc/shadow file via the commandline using standard system utilities. After elevating privileges to root, threat actors may attempt to read or dump this file in order to gain valid credentials. They may utilize these to move laterally undetected and access additional resources. |
update |
4 |
|
Identifies suspicious usage of unshare to manipulate system namespaces. Unshare can be utilized to escalate privileges or escape container security boundaries. Threat actors have utilized this binary to allow themselves to escape to the host and access other resources or escalate privileges. |
update |
4 |
|
Identifies the execution of a process with arguments pointing to known browser files that store passwords and cookies. Adversaries may acquire credentials from web browsers by reading files specific to the target browser. |
update |
102 |
|
Adversaries may collect the keychain storage data from a system to acquire credentials. Keychains are the built-in way for macOS to keep track of users' passwords and credentials for many services and features such as WiFi passwords, websites, secure notes and certificates. |
update |
102 |
|
Identifies the execution of macOS built-in commands used to dump user account hashes. Adversaries may attempt to dump credentials to obtain account login information in the form of a hash. These hashes can be cracked or leveraged for lateral movement. |
update |
102 |
|
Adversaries may dump the content of the keychain storage data from a system to acquire credentials. Keychains are the built-in way for macOS to keep track of users' passwords and credentials for many services and features, including Wi-Fi and website passwords, secure notes, certificates, and Kerberos. |
update |
102 |
|
Identifies the use of the Kerberos credential cache (kcc) utility to dump locally cached Kerberos tickets. Adversaries may attempt to dump credential material in the form of tickets that can be leveraged for lateral movement. |
update |
102 |
|
Adversaries may collect keychain storage data from a system to in order to acquire credentials. Keychains are the built-in way for macOS to keep track of users' passwords and credentials for many services and features, including Wi-Fi and website passwords, secure notes, certificates, and Kerberos. |
update |
102 |
|
Identifies the use of the built-in networksetup command to configure webproxy settings. This may indicate an attempt to hijack web browser traffic for credential access via traffic sniffing or redirection. |
update |
102 |
|
Identifies a high number (20) of macOS SSH KeyGen process executions from the same host. An adversary may attempt a brute force attack to obtain unauthorized access to user accounts. |
update |
103 |
|
Identifies the use of osascript to execute scripts via standard input that may prompt a user with a rogue dialog for credentials. |
update |
102 |
|
Keychains are the built-in way for macOS to keep track of users' passwords and credentials for many services and features, including Wi-Fi and website passwords, secure notes, certificates, and Kerberos. Adversaries may collect the keychain storage data from a system to acquire credentials. |
update |
102 |
|
Identifies changes to the SoftwareUpdate preferences using the built-in defaults command. Adversaries may abuse this in an attempt to disable security updates. |
update |
102 |
|
Identifies a potential Gatekeeper bypass. In macOS, when applications or programs are downloaded from the internet, there is a quarantine flag set on the file. This attribute is read by Apple’s Gatekeeper defense program at execution time. An adversary may disable this attribute to evade defenses. |
update |
102 |
|
Detects attempts to disable Gatekeeper on macOS. Gatekeeper is a security feature that’s designed to ensure that only trusted software is run. Adversaries may attempt to disable Gatekeeper before executing malicious code. |
update |
102 |
|
Adversaries may install a root certificate on a compromised system to avoid warnings when connecting to their command and control servers. Root certificates are used in public key cryptography to identify a root certificate authority (CA). When a root certificate is installed, the system or application will trust certificates in the root’s chain of trust that have been signed by the root certificate. |
update |
102 |
|
Identifies modifications to an environment variable using the built-in launchctl command. Adversaries may execute their own malicious payloads by hijacking certain environment variables to load arbitrary libraries or bypass certain restrictions. |
update |
102 |
|
Identifies the use of sqlite3 to directly modify the Transparency, Consent, and Control (TCC) SQLite database. This may indicate an attempt to bypass macOS privacy controls, including access to sensitive resources like the system camera, microphone, address book, and calendar. |
update |
102 |
|
Identifies use of the Secure Copy Protocol (SCP) to copy files locally by abusing the auto addition of the Secure Shell Daemon (sshd) to the authorized application list for Full Disk Access. This may indicate attempts to bypass macOS privacy controls to access sensitive files. |
update |
102 |
|
Identifies changes to the Safari configuration using the built-in defaults command. Adversaries may attempt to enable or disable certain Safari settings, such as enabling JavaScript from Apple Events to ease in the hijacking of the users browser. |
update |
102 |
|
Identifies the creation of a suspicious zip file prepended with special characters. Sandboxed Microsoft Office applications on macOS are allowed to write files that start with special characters, which can be combined with an AutoStart location to achieve sandbox evasion. |
update |
102 |
|
Identifies the use of the mount_apfs command to mount the entire file system through Apple File System (APFS) snapshots as read-only and with the noowners flag set. This action enables the adversary to access almost any file in the file system, including all user data and files protected by Apple’s privacy framework (TCC). |
update |
102 |
|
Attempt to Unload Elastic Endpoint Security Kernel Extension |
Identifies attempts to unload the Elastic Endpoint Security kernel extension via the kextunload command. |
update |
102 |
Identifies the execution of macOS built-in commands related to account or group enumeration. Adversaries may use account and group information to orient themselves before deciding how to act. |
update |
102 |
|
Identifies attempts to execute a child process from within the context of an Electron application using the child_process Node.js module. Adversaries may abuse this technique to inherit permissions from parent processes. |
update |
102 |
|
Identifies the execution of a suspicious browser child process. Adversaries may gain access to a system through a user visiting a website over the normal course of browsing. With this technique, the user’s web browser is typically targeted for exploitation. |
update |
102 |
|
Detects the execution of a MacOS installer package with an abnormal child process (e.g bash) followed immediately by a network connection via a suspicious process (e.g curl). Threat actors will build and distribute malicious MacOS installer packages, which have a .pkg extension, many times imitating valid software in order to persuade and infect their victims often using the package files (e.g pre/post install scripts etc.) to download additional tools or malicious software. If this rule fires it should indicate the installation of a malicious or suspicious package. |
update |
102 |
|
Identifies the execution of the Automator Workflows process followed by a network connection from it’s XPC service. Adversaries may drop a custom workflow template that hosts malicious JavaScript for Automation (JXA) code as an alternative to using osascript. |
update |
102 |
|
Detects execution via the Apple script interpreter (osascript) followed by a network connection from the same process within a short time period. Adversaries may use malicious scripts for execution and command and control. |
update |
102 |
|
Identifies the execution of the shell process (sh) via scripting (JXA or AppleScript). Adversaries may use the doShellScript functionality in JXA or do shell script in AppleScript to execute system commands. |
update |
102 |
|
Identifies suspicious child processes of frequently targeted Microsoft Office applications (Word, PowerPoint, and Excel). These child processes are often launched during exploitation of Office applications or by documents with malicious macros. |
update |
102 |
|
Identifies use of Bifrost, a known macOS Kerberos pentesting tool, which can be used to dump cached Kerberos tickets or attempt unauthorized authentication techniques such as pass-the-ticket/hash and kerberoasting. |
update |
102 |
|
Identifies the execution of macOS built-in commands to mount a Server Message Block (SMB) network share. Adversaries may use valid accounts to interact with a remote network share using SMB. |
update |
102 |
|
Detects use of the systemsetup command to enable remote SSH Login. |
update |
102 |
|
Identifies the execution of macOS built-in commands to connect to an existing Virtual Private Network (VPN). Adversaries may use VPN connections to laterally move and control remote systems on a network. |
update |
102 |
|
Identifies attempts to create a local account that will be hidden from the macOS logon window. This may indicate an attempt to evade user attention while maintaining persistence using a separate local account. |
update |
102 |
|
An adversary can establish persistence by installing a new launch agent that executes at login by using launchd or launchctl to load a plist into the appropriate directories. |
update |
102 |
|
Identifies the execution of osascript to create a hidden login item. This may indicate an attempt to persist a malicious program while concealing its presence. |
update |
103 |
|
Indicates the creation or modification of a launch daemon, which adversaries may use to repeatedly execute malicious payloads as part of persistence. |
update |
102 |
|
Authorization plugins are used to extend the authorization services API and implement mechanisms that are not natively supported by the OS, such as multi-factor authentication with third party software. Adversaries may abuse this feature to persist and/or collect clear text credentials as they traverse the registered plugins during user logon. |
update |
102 |
|
Identifies attempts to create or modify a crontab via a process that is not crontab (i.e python, osascript, etc.). This activity should not be highly prevalent and could indicate the use of cron as a persistence mechanism by a threat actor. |
update |
102 |
|
Identifies the execution of a launchd child process with a hidden file. An adversary can establish persistence by installing a new logon item, launch agent, or daemon that executes upon login. |
update |
102 |
|
Identifies the creation or modification of a DirectoryService PlugIns (dsplug) file. The DirectoryService daemon launches on each system boot and automatically reloads after crash. It scans and executes bundles that are located in the DirectoryServices PlugIns folder and can be abused by adversaries to maintain persistence. |
update |
102 |
|
An adversary can establish persistence by modifying an existing macOS dock property list in order to execute a malicious application instead of the intended one when invoked. |
update |
102 |
|
Identifies the creation or modification of the Event Monitor Daemon (emond) rules. Adversaries may abuse this service by writing a rule to execute commands when a defined event occurs, such as system start up or user authentication. |
update |
102 |
|
Identifies the execution of a suspicious child process of the Event Monitor Daemon (emond). Adversaries may abuse this service by writing a rule to execute commands when a defined event occurs, such as system start up or user authentication. |
update |
102 |
|
Identifies attempts to enable the root account using the dsenableroot command. This command may be abused by adversaries for persistence, as the root account is disabled by default. |
update |
102 |
|
Identifies the creation of a hidden launch agent or daemon. An adversary may establish persistence by installing a new launch agent or daemon which executes at login. |
update |
102 |
|
Finder Sync plugins enable users to extend Finder’s functionality by modifying the user interface. Adversaries may abuse this feature by adding a rogue Finder Plugin to repeatedly execute malicious payloads for persistence. |
update |
102 |
|
Detects modification of a Folder Action script. A Folder Action script is executed when the folder to which it is attached has items added or removed, or when its window is opened, closed, moved, or resized. Adversaries may abuse this feature to establish persistence by utilizing a malicious script. |
update |
102 |
|
Identifies use of the Defaults command to install a login or logoff hook in MacOS. An adversary may abuse this capability to establish persistence in an environment by inserting code to be executed at login or logout. |
update |
102 |
|
Identifies the creation or modification of the login window property list (plist). Adversaries may modify plist files to run a program during system boot or user login for persistence. |
update |
103 |
|
Adversaries may create or modify the Sublime application plugins or scripts to execute a malicious payload each time the Sublime application is started. |
update |
102 |
|
Identifies the creation or modification of the default configuration for periodic tasks. Adversaries may abuse periodic tasks to execute malicious code or maintain persistence. |
update |
102 |
|
Identifies when a child process is spawned by the screensaver engine process, which is consistent with an attacker’s malicious payload being executed after the screensaver activated on the endpoint. An adversary can maintain persistence on a macOS endpoint by creating a malicious screensaver (.saver) file and configuring the screensaver plist file to execute code each time the screensaver is activated. |
update |
102 |
|
Identifies when a screensaver plist file is modified by an unexpected process. An adversary can maintain persistence on a macOS endpoint by creating a malicious screensaver (.saver) file and configuring the screensaver plist file to execute code each time the screensaver is activated. |
update |
102 |
|
Identifies suspicious modifications of the calendar file by an unusual process. Adversaries may create a custom calendar notification procedure to execute a malicious program at a recurring interval to establish persistence. |
update |
102 |
|
Identifies modifications to the Atom desktop text editor Init File. Adversaries may add malicious JavaScript code to the init.coffee file that will be executed upon the Atom application opening. |
update |
102 |
|
Identifies execution of the Apple script interpreter (osascript) without a password prompt and with administrator privileges. |
update |
102 |
|
Identifies execution of the security_authtrampoline process via a scripting interpreter. This occurs when programs use AuthorizationExecute-WithPrivileges from the Security.framework to run another program with root privileges. It should not be run by itself, as this is a sign of execution with explicit logon credentials. |
update |
102 |
|
Suspicious Child Process of Adobe Acrobat Reader Update Service |
Detects attempts to exploit privilege escalation vulnerabilities related to the Adobe Acrobat Reader PrivilegedHelperTool responsible for installing updates. For more information, refer to CVE-2020-9615, CVE-2020-9614 and CVE-2020-9613 and verify that the impacted system is patched. |
update |
102 |
Identifies attempts to add an account to the admin group via the command line. This could be an indication of privilege escalation activity. |
update |
102 |
|
Identifies modifications to the root crontab file. Adversaries may overwrite this file to gain code execution with root privileges by exploiting privileged file write or move related vulnerabilities. |
update |
102 |
|
A machine learning job detected unusually large numbers of DNS queries for a single top-level DNS domain, which is often used for DNS tunneling. DNS tunneling can be used for command-and-control, persistence, or data exfiltration activity. For example, dnscat tends to generate many DNS questions for a top-level domain as it uses the DNS protocol to tunnel data. |
update |
101 |
|
A machine learning job detected a rare and unusual DNS query that indicate network activity with unusual DNS domains. This can be due to initial access, persistence, command-and-control, or exfiltration activity. For example, when a user clicks on a link in a phishing email or opens a malicious document, a request may be sent to download and run a payload from an uncommon domain. When malware is already running, it may send requests to an uncommon DNS domain the malware uses for command-and-control communication. |
update |
101 |
|
A machine learning job detected a rare and unusual URL that indicates unusual web browsing activity. This can be due to initial access, persistence, command-and-control, or exfiltration activity. For example, in a strategic web compromise or watering hole attack, when a trusted website is compromised to target a particular sector or organization, targeted users may receive emails with uncommon URLs for trusted websites. These URLs can be used to download and run a payload. When malware is already running, it may send requests to uncommon URLs on trusted websites the malware uses for command-and-control communication. When rare URLs are observed being requested for a local web server by a remote source, these can be due to web scanning, enumeration or attack traffic, or they can be due to bots and web scrapers which are part of common Internet background traffic. |
update |
101 |
|
A machine learning job detected a rare and unusual user agent indicating web browsing activity by an unusual process other than a web browser. This can be due to persistence, command-and-control, or exfiltration activity. Uncommon user agents coming from remote sources to local destinations are often the result of scanners, bots, and web scrapers, which are part of common Internet background traffic. Much of this is noise, but more targeted attacks on websites using tools like Burp or SQLmap can sometimes be discovered by spotting uncommon user agents. Uncommon user agents in traffic from local sources to remote destinations can be any number of things, including harmless programs like weather monitoring or stock-trading programs. However, uncommon user agents from local sources can also be due to malware or scanning activity. |
update |
101 |
|
A machine learning job found an unusually large spike in authentication failure events. This can be due to password spraying, user enumeration or brute force activity and may be a precursor to account takeover or credentialed access. |
update |
102 |
|
A machine learning job found an unusually large spike in successful authentication events. This can be due to password spraying, user enumeration or brute force activity. |
update |
101 |
|
A machine learning job found an unusually large spike in successful authentication events from a particular source IP address. This can be due to password spraying, user enumeration or brute force activity. |
update |
102 |
|
Looks for anomalous access to the metadata service by an unusual process. The metadata service may be targeted in order to harvest credentials or user data scripts containing secrets. |
update |
101 |
|
Looks for anomalous access to the cloud platform metadata service by an unusual user. The metadata service may be targeted in order to harvest credentials or user data scripts containing secrets. |
update |
101 |
|
Identifies an unusually high number of authentication attempts. |
update |
101 |
|
Looks for anomalous access to the metadata service by an unusual process. The metadata service may be targeted in order to harvest credentials or user data scripts containing secrets. |
update |
101 |
|
Looks for anomalous access to the cloud platform metadata service by an unusual user. The metadata service may be targeted in order to harvest credentials or user data scripts containing secrets. |
update |
101 |
|
Looks for commands related to system information discovery from an unusual user context. This can be due to uncommon troubleshooting activity or due to a compromised account. A compromised account may be used to engage in system information discovery in order to gather detailed information about system configuration and software versions. This may be a precursor to selection of a persistence mechanism or a method of privilege elevation. |
update |
101 |
|
Looks for commands related to system network configuration discovery from an unusual user context. This can be due to uncommon troubleshooting activity or due to a compromised account. A compromised account may be used by a threat actor to engage in system network configuration discovery in order to increase their understanding of connected networks and hosts. This information may be used to shape follow-up behaviors such as lateral movement or additional discovery. |
update |
101 |
|
Looks for commands related to system network connection discovery from an unusual user context. This can be due to uncommon troubleshooting activity or due to a compromised account. A compromised account may be used by a threat actor to engage in system network connection discovery in order to increase their understanding of connected services and systems. This information may be used to shape follow-up behaviors such as lateral movement or additional discovery. |
update |
101 |
|
Looks for commands related to system process discovery from an unusual user context. This can be due to uncommon troubleshooting activity or due to a compromised account. A compromised account may be used by a threat actor to engage in system process discovery in order to increase their understanding of software applications running on a target host or network. This may be a precursor to selection of a persistence mechanism or a method of privilege elevation. |
update |
101 |
|
Looks for commands related to system user or owner discovery from an unusual user context. This can be due to uncommon troubleshooting activity or due to a compromised account. A compromised account may be used to engage in system owner or user discovery in order to identify currently active or primary users of a system. This may be a precursor to additional discovery, credential dumping or privilege elevation activity. |
update |
101 |
|
A machine learning job detected a PowerShell script with unusual data characteristics, such as obfuscation, that may be a characteristic of malicious PowerShell script text blocks. |
update |
102 |
|
A machine learning job detected a user logging in at a time of day that is unusual for the user. This can be due to credentialed access via a compromised account when the user and the threat actor are in different time zones. In addition, unauthorized user activity often takes place during non-business hours. |
update |
102 |
|
A machine learning job detected a user logging in from an IP address that is unusual for the user. This can be due to credentialed access via a compromised account when the user and the threat actor are in different locations. An unusual source IP address for a username could also be due to lateral movement when a compromised account is used to pivot between hosts. |
update |
101 |
|
A machine learning job found an unusual user name in the authentication logs. An unusual user name is one way of detecting credentialed access by means of a new or dormant user account. An inactive user account (because the user has left the organization) that becomes active may be due to credentialed access using a compromised account password. Threat actors will sometimes also create new users as a means of persisting in a compromised web application. |
update |
102 |
|
A machine learning job detected activity for a username that is not normally active, which can indicate unauthorized changes, activity by unauthorized users, lateral movement, or compromised credentials. In many organizations, new usernames are not often created apart from specific types of system activities, such as creating new accounts for new employees. These user accounts quickly become active and routine. Events from rarely used usernames can point to suspicious activity. Additionally, automated Linux fleets tend to see activity from rarely used usernames only when personnel log in to make authorized or unauthorized changes, or threat actors have acquired credentials and log in for malicious purposes. Unusual usernames can also indicate pivoting, where compromised credentials are used to try and move laterally from one host to another. |
update |
101 |
|
A machine learning job detected activity for a username that is not normally active, which can indicate unauthorized changes, activity by unauthorized users, lateral movement, or compromised credentials. In many organizations, new usernames are not often created apart from specific types of system activities, such as creating new accounts for new employees. These user accounts quickly become active and routine. Events from rarely used usernames can point to suspicious activity. Additionally, automated Linux fleets tend to see activity from rarely used usernames only when personnel log in to make authorized or unauthorized changes, or threat actors have acquired credentials and log in for malicious purposes. Unusual usernames can also indicate pivoting, where compromised credentials are used to try and move laterally from one host to another. |
update |
102 |
|
A machine learning job detected an unusual remote desktop protocol (RDP) username, which can indicate account takeover or credentialed persistence using compromised accounts. RDP attacks, such as BlueKeep, also tend to use unusual usernames. |
update |
101 |
|
A machine learning job detected an unusually large spike in network traffic that was denied by network access control lists (ACLs) or firewall rules. Such a burst of denied traffic is usually caused by either 1) a mis-configured application or firewall or 2) suspicious or malicious activity. Unsuccessful attempts at network transit, in order to connect to command-and-control (C2), or engage in data exfiltration, may produce a burst of failed connections. This could also be due to unusually large amounts of reconnaissance or enumeration traffic. Denial-of-service attacks or traffic floods may also produce such a surge in traffic. |
update |
101 |
|
A machine learning job detected an unusually large spike in network traffic. Such a burst of traffic, if not caused by a surge in business activity, can be due to suspicious or malicious activity. Large-scale data exfiltration may produce a burst of network traffic; this could also be due to unusually large amounts of reconnaissance or enumeration traffic. Denial-of-service attacks or traffic floods may also produce such a surge in traffic. |
update |
101 |
|
Identifies Linux processes that do not usually use the network but have unexpected network activity, which can indicate command-and-control, lateral movement, persistence, or data exfiltration activity. A process with unusual network activity can denote process exploitation or injection, where the process is used to run persistence mechanisms that allow a malicious actor remote access or control of the host, data exfiltration, and execution of unauthorized network applications. |
update |
101 |
|
Identifies unusual destination port activity that can indicate command-and-control, persistence mechanism, or data exfiltration activity. Rarely used destination port activity is generally unusual in Linux fleets, and can indicate unauthorized access or threat actor activity. |
update |
101 |
|
A machine learning job detected an unusual network destination domain name. This can be due to initial access, persistence, command-and-control, or exfiltration activity. For example, when a user clicks on a link in a phishing email or opens a malicious document, a request may be sent to download and run a payload from an uncommon web server name. When malware is already running, it may send requests to an uncommon DNS domain the malware uses for command-and-control communication. |
update |
101 |
|
A machine learning job detected a rare destination country name in the network logs. This can be due to initial access, persistence, command-and-control, or exfiltration activity. For example, when a user clicks on a link in a phishing email or opens a malicious document, a request may be sent to download and run a payload from a server in a country which does not normally appear in network traffic or business work-flows. Malware instances and persistence mechanisms may communicate with command-and-control (C2) infrastructure in their country of origin, which may be an unusual destination country for the source network. |
update |
101 |
|
A machine learning job detected an unusually large spike in network activity to one destination country in the network logs. This could be due to unusually large amounts of reconnaissance or enumeration traffic. Data exfiltration activity may also produce such a surge in traffic to a destination country that does not normally appear in network traffic or business workflows. Malware instances and persistence mechanisms may communicate with command-and-control (C2) infrastructure in their country of origin, which may be an unusual destination country for the source network. |
update |
102 |
|
Identifies Windows processes that do not usually use the network but have unexpected network activity, which can indicate command-and-control, lateral movement, persistence, or data exfiltration activity. A process with unusual network activity can denote process exploitation or injection, where the process is used to run persistence mechanisms that allow a malicious actor remote access or control of the host, data exfiltration, and execution of unauthorized network applications. |
update |
101 |
|
Searches for rare processes running on multiple Linux hosts in an entire fleet or network. This reduces the detection of false positives since automated maintenance processes usually only run occasionally on a single machine but are common to all or many hosts in a fleet. |
update |
102 |
|
Identifies rare processes that do not usually run on individual hosts, which can indicate execution of unauthorized services, malware, or persistence mechanisms. Processes are considered rare when they only run occasionally as compared with other processes running on the host. |
update |
102 |
|
Identifies rare processes that do not usually run on individual hosts, which can indicate execution of unauthorized services, malware, or persistence mechanisms. Processes are considered rare when they only run occasionally as compared with other processes running on the host. |
update |
104 |
|
Identifies processes started from atypical folders in the file system, which might indicate malware execution or persistence mechanisms. In corporate Windows environments, software installation is centrally managed and it is unusual for programs to be executed from user or temporary directories. Processes executed from these locations can denote that a user downloaded software directly from the Internet or a malicious script or macro executed malware. |
update |
102 |
|
Searches for rare processes running on multiple hosts in an entire fleet or network. This reduces the detection of false positives since automated maintenance processes usually only run occasionally on a single machine but are common to all or many hosts in a fleet. |
update |
102 |
|
Identifies unusual parent-child process relationships that can indicate malware execution or persistence mechanisms. Malicious scripts often call on other applications and processes as part of their exploit payload. For example, when a malicious Office document runs scripts as part of an exploit payload, Excel or Word may start a script interpreter process, which, in turn, runs a script that downloads and executes malware. Another common scenario is Outlook running an unusual process when malware is downloaded in an email. Monitoring and identifying anomalous process relationships is a method of detecting new and emerging malware that is not yet recognized by anti-virus scanners. |
update |
102 |
|
A machine learning job detected an unusual Windows service, This can indicate execution of unauthorized services, malware, or persistence mechanisms. In corporate Windows environments, hosts do not generally run many rare or unique services. This job helps detect malware and persistence mechanisms that have been installed and run as a service. |
update |
101 |
|
Looks for sudo activity from an unusual user context. An unusual sudo user could be due to troubleshooting activity or it could be a sign of credentialed access via compromised accounts. |
update |
101 |
|
A machine learning job detected an unusual user context switch, using the runas command or similar techniques, which can indicate account takeover or privilege escalation using compromised accounts. Privilege elevation using tools like runas are more commonly used by domain and network administrators than by regular Windows users. |
update |
101 |
|
Looks for compiler activity by a user context which does not normally run compilers. This can be the result of ad-hoc software changes or unauthorized software deployment. This can also be due to local privilege elevation via locally run exploits or malware activity. |
update |
101 |
|
Generates a detection alert for each external alert written to the configured indices. Enabling this rule allows you to immediately begin investigating external alerts in the app. |
update |
101 |
|
Detects Inter-Process Communication with Outlook via Component Object Model from an unusual process. Adversaries may target user email to collect sensitive information or send email on their behalf via API. |
update |
2 |
|
Identifies the use of the Exchange PowerShell cmdlet, New-MailBoxExportRequest, to export the contents of a primary mailbox or archive to a .pst file. Adversaries may target user email to collect sensitive information. |
update |
105 |
|
Identifies the use of the Exchange PowerShell cmdlet, New-MailBoxExportRequest, to export the contents of a primary mailbox or archive to a .pst file. Adversaries may target user email to collect sensitive information. |
update |
2 |
|
PowerShell Suspicious Script with Audio Capture Capabilities |
Detects PowerShell scripts that can record audio, a common feature in popular post-exploitation tooling. |
update |
105 |
PowerShell Suspicious Script with Clipboard Retrieval Capabilities |
Detects PowerShell scripts that can get the contents of the clipboard, which attackers can abuse to retrieve sensitive information like credentials, messages, etc. |
update |
2 |
Detects the use of Win32 API Functions that can be used to capture user keystrokes in PowerShell scripts. Attackers use this technique to capture user input, looking for credentials and/or other valuable data. |
update |
105 |
|
Detects PowerShell scripts that can be used to collect data from mailboxes. Adversaries may target user email to collect sensitive information. |
update |
2 |
|
Detects PowerShell scripts that can take screenshots, which is a common feature in post-exploitation kits and remote access tools (RATs). |
update |
105 |
|
Identifies use of WinRar or 7z to create an encrypted files. Adversaries will often compress and encrypt data in preparation for exfiltration. |
update |
105 |
|
Identifies Certreq making an HTTP Post request. Adversaries could abuse Certreq to exfiltrate data to a remote URL. |
update |
2 |
|
Identifies certutil.exe making a network connection. Adversaries could abuse certutil.exe to download a certificate, or malware, from a remote URL. |
update |
104 |
|
Adversaries may implement command and control (C2) communications that use common web services to hide their activity. This attack technique is typically targeted at an organization and uses web services common to the victim network, which allows the adversary to blend into legitimate traffic activity. These popular services are typically targeted since they have most likely been used before compromise, which helps malicious traffic blend in. |
update |
104 |
|
This rule identifies a large number (15) of nslookup.exe executions with an explicit query type from the same host. This may indicate command and control activity utilizing the DNS protocol. |
update |
104 |
|
Connection to Commonly Abused Free SSL Certificate Providers |
Identifies unusual processes connecting to domains using known free SSL certificates. Adversaries may employ a known encryption algorithm to conceal command and control traffic. |
update |
102 |
Identifies instances of Internet Explorer (iexplore.exe) being started via the Component Object Model (COM) making unusual network connections. Adversaries could abuse Internet Explorer via COM to avoid suspicious processes making network connections and bypass host-based firewall restrictions. |
update |
102 |
|
Identifies downloads of executable and archive files via the Windows Background Intelligent Transfer Service (BITS). Adversaries could leverage Windows BITS transfer jobs to download remote payloads. |
update |
2 |
|
Identifies the creation of a new port forwarding rule. An adversary may abuse this technique to bypass network segmentation restrictions. |
update |
104 |
|
Identifies potential use of an SSH utility to establish RDP over a reverse SSH Tunnel. This can be used by attackers to enable routing of network packets that would otherwise not reach their intended destination. |
update |
104 |
|
Identifies the desktopimgdownldr utility being used to download a remote file. An adversary may use desktopimgdownldr to download arbitrary files as an alternative to certutil. |
update |
104 |
|
Identifies the Windows Defender configuration utility (MpCmdRun.exe) being used to download a remote file. |
update |
104 |
|
Identifies powershell.exe being used to download an executable file from an untrusted remote destination. |
update |
104 |
|
Identifies built-in Windows script interpreters (cscript.exe or wscript.exe) being used to download an executable file from a remote destination. |
update |
104 |
|
The malware known as SUNBURST targets the SolarWind’s Orion business software for command and control. This rule detects post-exploitation command and control activity of the SUNBURST backdoor. |
update |
104 |
|
Identifies an executable or script file remotely downloaded via a TeamViewer transfer session. |
update |
104 |
|
Identifies multiple consecutive logon failures targeting an Admin account from the same source address and within a short time interval. Adversaries will often brute force login attempts across multiple users with a common or known password, in an attempt to gain access to accounts. |
update |
4 |
|
Identifies multiple logon failures followed by a successful one from the same source address. Adversaries will often brute force login attempts across multiple users with a common or known password, in an attempt to gain access to accounts. |
update |
4 |
|
Identifies multiple consecutive logon failures from the same source address and within a short time interval. Adversaries will often brute force login attempts across multiple users with a common or known password, in an attempt to gain access to accounts. |
update |
4 |
|
Identifies the execution of known Windows utilities often abused to dump LSASS memory or the Active Directory database (NTDS.dit) in preparation for credential access. |
update |
105 |
|
Identifies a copy operation of the Active Directory Domain Database (ntds.dit) or Security Account Manager (SAM) files. Those files contain sensitive information including hashed domain and/or local credentials. |
update |
104 |
|
An instance of MSBuild, the Microsoft Build Engine, loaded DLLs (dynamically linked libraries) responsible for Windows credential management. This technique is sometimes used for credential dumping. |
update |
104 |
|
This rule identifies when a User Account starts the Active Directory Replication Process for the first time. Attackers can use the DCSync technique to get credential information of individual accounts or the entire domain, thus compromising the entire domain. |
update |
2 |
|
This rule identifies when a User Account starts the Active Directory Replication Process. Attackers can use the DCSync technique to get credential information of individual accounts or the entire domain, thus compromising the entire domain. |
update |
105 |
|
Identifies the modification of an account’s Kerberos pre-authentication options. An adversary with GenericWrite/GenericAll rights over the account can maliciously modify these settings to perform offline password cracking attacks such as AS-REP roasting. |
update |
105 |
|
Identifies the creation or modification of Domain Backup private keys. Adversaries may extract the Data Protection API (DPAPI) domain backup key from a Domain Controller (DC) to be able to decrypt any domain user master key file. |
update |
103 |
|
Identifies attempts to export a registry hive which may contain credentials using the Windows reg.exe tool. |
update |
104 |
|
Identifies the enable of the full user-mode dumps feature system-wide. This feature allows Windows Error Reporting (WER) to collect data after an application crashes. This setting is a requirement for the LSASS Shtinkering attack, which fakes the communication of a crash on LSASS, generating a dump of the process memory, which gives the attacker access to the credentials present on the system without having to bring malware to the system. This setting is not enabled by default, and applications must create their registry subkeys to hold settings that enable them to collect dumps. |
update |
3 |
|
Identifies the Internet Information Services (IIS) command-line tool, AppCmd, being used to list passwords. An attacker with IIS web server access via a web shell can decrypt and dump the IIS AppPool service account password using AppCmd. |
update |
104 |
|
Identifies use of aspnet_regiis to decrypt Microsoft IIS connection strings. An attacker with Microsoft IIS web server access via a webshell or alike can decrypt and dump any hardcoded connection strings, such as the MSSQL service account password using aspnet_regiis command. |
update |
104 |
|
Identifies network connections to the standard Kerberos port from an unusual process. On Windows, the only process that normally performs Kerberos traffic from a domain joined host is lsass.exe. |
update |
104 |
|
Identify access to sensitive Active Directory object attributes that contains credentials and decryption keys such as unixUserPassword, ms-PKI-AccountCredentials and msPKI-CredentialRoamingTokens. |
update |
4 |
|
Identifies suspicious access to LSASS handle from a call trace pointing to seclogon.dll and with a suspicious access rights value. This may indicate an attempt to leak an LSASS handle via abusing the Secondary Logon service in preparation for credential access. |
update |
103 |
|
Identifies LSASS loading an unsigned or untrusted DLL. Windows Security Support Provider (SSP) DLLs are loaded into LSSAS process at system start. Once loaded into the LSA, SSP DLLs have access to encrypted and plaintext passwords that are stored in Windows, such as any logged-on user’s Domain password or smart card PINs. |
update |
2 |
|
Identifies the creation of a Local Security Authority Subsystem Service (lsass.exe) default memory dump. This may indicate a credential access attempt via trusted system utilities such as Task Manager (taskmgr.exe) and SQL Dumper (sqldumper.exe) or known pentesting tools such as Dumpert and AndrewSpecial. |
update |
103 |
|
Identifies handle requests for the Local Security Authority Subsystem Service (LSASS) object access with specific access masks that many tools with a capability to dump memory to disk use (0x1fffff, 0x1010, 0x120089). This rule is tool agnostic as it has been validated against a host of various LSASS dump tools such as SharpDump, Procdump, Mimikatz, Comsvcs etc. It detects this behavior at a low level and does not depend on a specific tool or dump file name. |
update |
105 |
|
Identifies the password log file from the default Mimikatz memssp module. |
update |
104 |
|
Mimikatz is a credential dumper capable of obtaining plaintext Windows account logins and passwords, along with many other features that make it useful for testing the security of networks. This rule detects Invoke-Mimikatz PowerShell script and alike. |
update |
105 |
|
Identifies attempts to modify the WDigest security provider in the registry to force the user’s password to be stored in clear text in memory. This behavior can be indicative of an adversary attempting to weaken the security configuration of an endpoint. Once the UseLogonCredential value is modified, the adversary may attempt to dump clear text passwords from memory. |
update |
104 |
|
Identifies the creation or modification of a medium-size registry hive file on a Server Message Block (SMB) share, which may indicate an exfiltration attempt of a previously dumped Security Account Manager (SAM) registry hive for credential extraction on an attacker-controlled system. |
update |
104 |
|
Identifies the modification of the network logon provider registry. Adversaries may register a rogue network logon provider module for persistence and/or credential access via intercepting the authentication credentials in clear text during user logon. |
update |
103 |
|
Detects PowerShell scripts that contain the default exported functions used on Invoke-NinjaCopy. Attackers can use Invoke-NinjaCopy to read SYSTEM files that are normally locked, such as the NTDS.dit file or registry hives. |
update |
2 |
|
This rule detects PowerShell scripts capable of dumping process memory using WindowsErrorReporting or Dbghelp.dll MiniDumpWriteDump. Attackers can use this tooling to dump LSASS and get access to credentials. |
update |
105 |
|
Detects PowerShell scripts that have the capability of requesting kerberos tickets, which is a common step in Kerberoasting toolkits to crack service accounts. |
update |
105 |
|
Identifies suspicious access to an LSASS handle via DuplicateHandle from an unknown call trace module. This may indicate an attempt to bypass the NtOpenProcess API to evade detection and dump LSASS memory for credential access. |
update |
103 |
|
Identifies attempt to coerce a local NTLM authentication via HTTP using the Windows Printer Spooler service as a target. An adversary may use this primitive in combination with other techniques to elevate privileges on a compromised system. |
update |
104 |
|
Identifies remote access to the registry to potentially dump credential data from the Security Account Manager (SAM) registry hive in preparation for credential access and privileges elevation. |
update |
105 |
|
Windows Credential Manager allows you to create, view, or delete saved credentials for signing into websites, connected applications, and networks. An adversary may abuse this to list or dump credentials stored in the Credential Manager for saved usernames and passwords. This may also be performed in preparation of lateral movement. |
update |
5 |
|
Windows Credential Manager allows you to create, view, or delete saved credentials for signing into websites, connected applications, and networks. An adversary may abuse this to list or dump credentials stored in the Credential Manager for saved usernames and passwords. This may also be performed in preparation of lateral movement. |
update |
104 |
|
Sensitive Privilege SeEnableDelegationPrivilege assigned to a User |
Identifies the assignment of the SeEnableDelegationPrivilege sensitive "user right" to a user. The SeEnableDelegationPrivilege "user right" enables computer and user accounts to be trusted for delegation. Attackers can abuse this right to compromise Active Directory accounts and elevate their privileges. |
update |
105 |
Identify the modification of the msDS-KeyCredentialLink attribute in an Active Directory Computer or User Object. Attackers can abuse control over the object and create a key pair, append to raw public key in the attribute, and obtain persistent and stealthy access to the target user or computer object. |
update |
104 |
|
Detects when a user account has the servicePrincipalName attribute modified. Attackers can abuse write privileges over a user to configure Service Principle Names (SPNs) so that they can perform Kerberoasting. Administrators can also configure this for legitimate purposes, exposing the account to Kerberoasting. |
update |
105 |
|
Identifies suspicious renamed COMSVCS.DLL Image Load, which exports the MiniDump function that can be used to dump a process memory. This may indicate an attempt to dump LSASS memory while bypassing command-line based detection in preparation for credential access. |
update |
103 |
|
Identifies access attempts to LSASS handle, this may indicate an attempt to dump credentials from Lsass memory. |
update |
2 |
|
Identifies suspicious access to LSASS handle from a call trace pointing to DBGHelp.dll or DBGCore.dll, which both export the MiniDumpWriteDump method that can be used to dump LSASS memory content in preparation for credential access. |
update |
103 |
|
Identifies suspicious access to an LSASS handle via PssCaptureSnapShot where two successive process accesses are performed by the same process and target two different instances of LSASS. This may indicate an attempt to evade detection and dump LSASS memory for credential access. |
update |
103 |
|
Identifies remote access to the registry using an account with Backup Operators group membership. This may indicate an attempt to exfiltrate credentials by dumping the Security Account Manager (SAM) registry hive in preparation for credential access and privileges elevation. |
update |
105 |
|
Identifies the creation of symbolic links to a shadow copy. Symbolic links can be used to access files in the shadow copy, including sensitive files such as ntds.dit, System Boot Key and browser offline credentials. |
update |
104 |
|
Identifies the creation of an LSASS process clone via PssCaptureSnapShot where the parent process is the initial LSASS process instance. This may indicate an attempt to evade detection and dump LSASS memory for credential access. |
update |
103 |
|
Identifies attempts to dump Wireless saved access keys in clear text using the Windows built-in utility Netsh. |
update |
3 |
|
Adversaries can add the hidden attribute to files to hide them from the user in an attempt to evade detection. |
update |
104 |
|
Identifies the creation of the Antimalware Scan Interface (AMSI) DLL in an unusual location. This may indicate an attempt to bypass AMSI by loading a rogue AMSI module instead of the legit one. |
update |
2 |
|
Identifies the execution of PowerShell script with keywords related to different Antimalware Scan Interface (AMSI) bypasses. An adversary may attempt first to disable AMSI before executing further malicious powershell scripts to evade detection. |
update |
2 |
|
Identifies modifications of the AmsiEnable registry key to 0, which disables the Antimalware Scan Interface (AMSI). An adversary can modify this key to disable AMSI protections. |
update |
104 |
|
Identifies when a user attempts to clear console history. An adversary may clear the command history of a compromised account to conceal the actions undertaken during an intrusion. |
update |
104 |
|
Identifies attempts to clear or disable Windows event log stores using Windows wevetutil command. This is often done by attackers in an attempt to evade detection or destroy forensic evidence on a system. |
update |
105 |
|
Identifies attempts to clear Windows event log stores. This is often done by attackers in an attempt to evade detection or destroy forensic evidence on a system. |
update |
105 |
|
Identifies attempts to disable/modify the code signing policy through system native utilities. Code signing provides authenticity on a program, and grants the user with the ability to check whether the program has been tampered with. By allowing the execution of unsigned or self-signed code, threat actors can craft and execute malicious code. |
update |
2 |
|
Identifies attempts to disable/modify the code signing policy through the registry. Code signing provides authenticity on a program, and grants the user with the ability to check whether the program has been tampered with. By allowing the execution of unsigned or self-signed code, threat actors can craft and execute malicious code. |
update |
2 |
|
Identifies the creation or modification of a local trusted root certificate in Windows. The install of a malicious root certificate would allow an attacker the ability to masquerade malicious files as valid signed components from any entity (for example, Microsoft). It could also allow an attacker to decrypt SSL traffic. |
update |
104 |
|
Windows CryptoAPI Spoofing Vulnerability (CVE-2020-0601 - CurveBall) |
A spoofing vulnerability exists in the way Windows CryptoAPI (Crypt32.dll) validates Elliptic Curve Cryptography (ECC) certificates. An attacker could exploit the vulnerability by using a spoofed code-signing certificate to sign a malicious executable, making it appear the file was from a trusted, legitimate source. |
update |
102 |
Identifies modifications to the Windows Defender registry settings to disable the service or set the service to be started manually. |
update |
104 |
|
Identifies modifications to the Windows Defender configuration settings using PowerShell to add exclusions at the folder directory or process level. |
update |
104 |
|
Identifies use of the fsutil.exe to delete the volume USNJRNL. This technique is used by attackers to eliminate evidence of files created during post-exploitation activities. |
update |
104 |
|
Identifies attempts to disable PowerShell Script Block Logging via registry modification. Attackers may disable this logging to conceal their activities in the host and evade detection. |
update |
104 |
|
Identifies use of the netsh.exe to disable or weaken the local firewall. Attackers will use this command line tool to disable the firewall during troubleshooting or to enable network mobility. |
update |
104 |
|
Identifies use of the Set-MpPreference PowerShell command to disable or weaken certain Windows Defender settings. |
update |
104 |
|
Disable Windows Event and Security Logs Using Built-in Tools |
Identifies attempts to disable EventLog via the logman Windows utility, PowerShell, or auditpol. This is often done by attackers in an attempt to evade detection on a system. |
update |
105 |
Identifies when a user enables DNS-over-HTTPS. This can be used to hide internet activity or the process of exfiltrating data. With this enabled, an organization will lose visibility into data such as query type, response, and originating IP, which are used to determine bad actors. |
update |
103 |
|
Identifies suspicious .NET code execution. connections. |
update |
104 |
|
Identifies use of the network shell utility (netsh.exe) to enable inbound Remote Desktop Protocol (RDP) connections in the Windows Firewall. |
update |
104 |
|
Identifies use of the netsh.exe program to enable host discovery via the network. Attackers can use this command-line tool to weaken the host firewall settings. |
update |
104 |
|
Identifies unusual instances of Control Panel with suspicious keywords or paths in the process command line value. Adversaries may abuse control.exe to proxy execution of malicious code. |
update |
104 |
|
Identifies abuse of the Windows Update Auto Update Client (wuauclt.exe) to load an arbitrary DLL. This behavior is used as a defense evasion technique to blend-in malicious activity with legitimate Windows software. |
update |
104 |
|
An instance of MSBuild, the Microsoft Build Engine, was started by Excel or Word. This is unusual behavior for the Build Engine and could have been caused by an Excel or Word document executing a malicious script payload. |
update |
104 |
|
An instance of MSBuild, the Microsoft Build Engine, was started by a script or the Windows command interpreter. This behavior is unusual and is sometimes used by malicious payloads. |
update |
103 |
|
An instance of MSBuild, the Microsoft Build Engine, was started by Explorer or the WMI (Windows Management Instrumentation) subsystem. This behavior is unusual and is sometimes used by malicious payloads. |
update |
104 |
|
An instance of MSBuild, the Microsoft Build Engine, was started after being renamed. This is uncommon behavior and may indicate an attempt to run unnoticed or undetected. |
update |
104 |
|
An instance of MSBuild, the Microsoft Build Engine, started a PowerShell script or the Visual C# Command Line Compiler. This technique is sometimes used to deploy a malicious payload using the Build Engine. |
update |
104 |
|
Identifies an instance of a Windows trusted program that is known to be vulnerable to DLL Search Order Hijacking starting after being renamed or from a non-standard path. This is uncommon behavior and may indicate an attempt to evade defenses via side loading a malicious DLL within the memory space of one of those processes. |
update |
103 |
|
Potential DLL Side-Loading via Microsoft Antimalware Service Executable |
Identifies a Windows trusted program that is known to be vulnerable to DLL Search Order Hijacking starting after being renamed or from a non-standard path. This is uncommon behavior and may indicate an attempt to evade defenses via side-loading a malicious DLL within the memory space of one of those processes. |
update |
104 |
Masquerading can allow an adversary to evade defenses and better blend in with the environment. One way it occurs is when the name or location of a file is manipulated as a means of tricking a user into executing what they think is a benign file type but is actually executable code. |
update |
103 |
|
Identifies process execution from suspicious default Windows directories. This is sometimes done by adversaries to hide malware in trusted paths. |
update |
104 |
|
Identifies registry write modifications to hide an encoded portable executable. This could be indicative of adversary defense evasion by avoiding the storing of malicious content directly on disk. |
update |
103 |
|
Identifies when Internet Information Services (IIS) HTTP Logging is disabled on a server. An attacker with IIS server access via a webshell or other mechanism can disable HTTP Logging as an effective anti-forensics measure. |
update |
104 |
|
An instance of MSBuild, the Microsoft Build Engine, created a thread in another process. This technique is sometimes used to evade detection or elevate privileges. |
update |
103 |
|
Identifies InstallUtil.exe making outbound network connections. This may indicate adversarial activity as InstallUtil is often leveraged by adversaries to execute code and evade detection. |
update |
103 |
|
A suspicious Endpoint Security parent process was detected. This may indicate a process hollowing or other form of code injection. |
update |
104 |
|
Identifies a suspicious AutoIt process execution. Malware written as an AutoIt script tends to rename the AutoIt executable to avoid detection. |
update |
104 |
|
A suspicious WerFault child process was detected, which may indicate an attempt to run via the SilentProcessExit registry key manipulation. Verify process details such as command line, network connections and file writes. |
update |
105 |
|
Identifies execution from a directory masquerading as the Windows Program Files directories. These paths are trusted and usually host trusted third party programs. An adversary may leverage masquerading, along with low privileges to bypass detections allowlisting those folders. |
update |
103 |
|
Identifies suspicious instances of the Windows Error Reporting process (WerFault.exe or Wermgr.exe) with matching command-line and process executable values performing outgoing network connections. This may be indicative of a masquerading attempt to evade suspicious child process behavior detections. |
update |
102 |
|
Identifies when one or more features on Microsoft Defender are disabled. Adversaries may disable or tamper with Microsoft Defender features to evade detection and conceal malicious behavior. |
update |
104 |
|
Binaries signed with trusted digital certificates can execute on Windows systems protected by digital signature validation. Adversaries may use these binaries to live off the land and execute malicious files that could bypass application allowlists and signature validation. |
update |
102 |
|
Microsoft Office Products offer options for users and developers to control the security settings for running and using Macros. Adversaries may abuse these security settings to modify the default behavior of the Office Application to trust future macros and/or disable security warnings, which could increase their chances of establishing persistence. |
update |
104 |
|
Identifies MsBuild.exe making outbound network connections. This may indicate adversarial activity as MsBuild is often leveraged by adversaries to execute code and evade detection. |
update |
102 |
|
Identifies Mshta.exe making outbound network connections. This may indicate adversarial activity, as Mshta is often leveraged by adversaries to execute malicious scripts and evade detection. |
update |
103 |
|
Identifies msxsl.exe making a network connection. This may indicate adversarial activity as msxsl.exe is often leveraged by adversaries to execute malicious scripts and evade detection. |
update |
102 |
|
Identifies network activity from unexpected system applications. This may indicate adversarial activity as these applications are often leveraged by adversaries to execute code and evade detection. |
update |
104 |
|
Identifies parent process spoofing used to thwart detection. Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. |
update |
102 |
|
Identifies registry modification to the LocalAccountTokenFilterPolicy policy. If this value exists (which doesn’t by default) and is set to 1, then remote connections from all local members of Administrators are granted full high-integrity tokens during negotiation. |
update |
3 |
|
Detects the use of Reflection.Assembly to load PEs and DLLs in memory in PowerShell scripts. Attackers use this method to load executables and DLLs without writing to the disk, bypassing security solutions. |
update |
105 |
|
Identifies the use of .NET functionality for decompression and base64 decoding combined in PowerShell scripts, which malware and security tools heavily use to deobfuscate payloads and load them directly in memory to bypass defenses. |
update |
105 |
|
Identifies the use of Cmdlets and methods related to encryption/decryption of files in PowerShell scripts, which malware and offensive security tools can abuse to encrypt data or decrypt payloads to bypass security solutions. |
update |
2 |
|
Detects the use of Windows API functions that are commonly abused by malware and security tools to load malicious code or inject it into remote processes. |
update |
105 |
|
Identifies process execution followed by a file overwrite of an executable by the same parent process. This may indicate an evasion attempt to execute malicious code in a stealthy way. |
update |
103 |
|
Identifies when the Windows Firewall is disabled using PowerShell cmdlets, which can help attackers evade network constraints, like internet and network lateral communication restrictions. |
update |
104 |
|
Identifies a process termination event quickly followed by the deletion of its executable file. Malware tools and other non-native files dropped or created on a system by an adversary may leave traces to indicate to what occurred. Removal of these files can occur during an intrusion, or as part of a post-intrusion process to minimize the adversary’s footprint. |
update |
103 |
|
Identifies potential abuse of the Microsoft Diagnostics Troubleshooting Wizard (MSDT) to proxy malicious command or binary execution via malicious process arguments. |
update |
104 |
|
Identifies child processes of unusual instances of RunDLL32 where the command line parameters were suspicious. Misuse of RunDLL32 could indicate malicious activity. |
update |
103 |
|
Identifies attempts to enable the Windows scheduled tasks AT command via the registry. Attackers may use this method to move laterally or persist locally. The AT command has been deprecated since Windows 8 and Windows Server 2012, but still exists for backwards compatibility. |
update |
103 |
|
Detects file name patterns generated by the use of Sysinternals SDelete utility to securely delete a file via multiple file overwrite and rename operations. |
update |
103 |
|
Identifies modifications to the registered Subject Interface Package (SIP) providers. SIP providers are used by the Windows cryptographic system to validate file signatures on the system. This may be an attempt to bypass signature validation checks or inject code into critical processes. |
update |
103 |
|
Identifies a SolarWinds binary modifying the start type of a service to be disabled. An adversary may abuse this technique to manipulate relevant security services. |
update |
103 |
|
Identifies suspicious commands being used with certutil.exe. CertUtil is a native Windows component which is part of Certificate Services. CertUtil is often abused by attackers to live off the land for stealthier command and control or data exfiltration. |
update |
103 |
|
Identifies when a script interpreter or signed binary is launched via a non-standard working directory. An attacker may use this technique to evade defenses. |
update |
102 |
|
Identifies a suspicious managed code hosting process which could indicate code injection or other form of suspicious code execution. |
update |
102 |
|
Identifies suspicious process access events from an unknown memory region. Endpoint security solutions usually hook userland Windows APIs in order to decide if the code that is being executed is malicious or not. It’s possible to bypass hooked functions by writing malicious functions that call syscalls directly. |
update |
104 |
|
Identifies when a process is created and immediately accessed from an unknown memory code region and by the same parent process. This may indicate a code injection attempt. |
update |
104 |
|
Identifies scrobj.dll loaded into unusual Microsoft processes. This usually means a malicious scriptlet is being executed in the target process. |
update |
102 |
|
Identifies process execution with a single character process name. This is often done by adversaries while staging or executing temporary utilities. |
update |
104 |
|
Identifies WMIC allowlist bypass techniques by alerting on suspicious execution of scripts. When WMIC loads scripting libraries it may be indicative of an allowlist bypass. |
update |
103 |
|
A suspicious Zoom child process was detected, which may indicate an attempt to run unnoticed. Verify process details such as command line, network connections, file writes and associated file signature details as well. |
update |
104 |
|
Unusual Executable File Creation by a System Critical Process |
Identifies an unexpected executable file being created or modified by a Windows system critical process, which may indicate activity related to remote code execution or other forms of exploitation. |
update |
104 |
Identifies modification of a file creation time. Adversaries may modify file time attributes to blend malicious content with existing files. Timestomping is a technique that modifies the timestamps of a file often to mimic files that are in trusted directories. |
update |
2 |
|
Identifies a Windows trusted program running from locations often abused by adversaries to masquerade as a trusted program and loading a recently dropped DLL. This behavior may indicate an attempt to evade defenses via side-loading a malicious DLL within the memory space of a signed processes. |
update |
2 |
|
Identifies attempt to load an untrusted driver. Adversaries may modify code signing policies to enable execution of unsigned or self-signed code. |
update |
2 |
|
Identifies suspicious creation of Alternate Data Streams on highly targeted files. This is uncommon for legitimate files and sometimes done by adversaries to hide malware. |
update |
105 |
|
Identifies processes running from an Alternate Data Stream. This is uncommon for legitimate processes and sometimes done by adversaries to hide malware. |
update |
103 |
|
Identifies unusual instances of dllhost.exe making outbound network connections. This may indicate adversarial Command and Control activity. |
update |
103 |
|
Identifies unusual instances of rundll32.exe making outbound network connections. This may indicate adversarial Command and Control activity. |
update |
105 |
|
Identifies network activity from unexpected system applications. This may indicate adversarial activity as these applications are often leveraged by adversaries to execute code and evade detection. |
update |
104 |
|
Identifies a suspicious child process of the Windows virtual system process, which could indicate code injection. |
update |
104 |
|
The Filter Manager Control Program (fltMC.exe) binary may be abused by adversaries to unload a filter driver and evade defenses. |
update |
104 |
|
Identifies the use of Windows Work Folders to execute a potentially masqueraded control.exe file in the current working directory. Misuse of Windows Work Folders could indicate malicious activity. |
update |
104 |
|
Detects Linux Bash commands from the the Windows Subsystem for Linux. Adversaries may enable and use WSL for Linux to avoid detection. |
update |
2 |
|
Detects attempts to execute a program on the host from the Windows Subsystem for Linux. Adversaries may enable and use WSL for Linux to avoid detection. |
update |
2 |
|
Detects attempts to enable the Windows Subsystem for Linux using Microsoft Dism utility. Adversaries may enable and use WSL for Linux to avoid detection. |
update |
2 |
|
Detects files creation and modification on the host system from the the Windows Subsystem for Linux. Adversaries may enable and use WSL for Linux to avoid detection. |
update |
2 |
|
Detects attempts to install or use Kali Linux via Windows Subsystem for Linux. Adversaries may enable and use WSL for Linux to avoid detection. |
update |
2 |
|
Detects changes to the registry that indicates the install of a new Windows Subsystem for Linux distribution by name. Adversaries may enable and use WSL for Linux to avoid detection. |
update |
2 |
|
This rule detects the Active Directory query tool, AdFind.exe. AdFind has legitimate purposes, but it is frequently leveraged by threat actors to perform post-exploitation Active Directory reconnaissance. The AdFind tool has been observed in Trickbot, Ryuk, Maze, and FIN6 campaigns. For Winlogbeat, this rule requires Sysmon. |
update |
104 |
|
Identifies instances of lower privilege accounts enumerating Administrator accounts or groups using built-in Windows tools. |
update |
105 |
|
Identifies when the SYSTEM account uses an account discovery utility. This could be a sign of discovery activity after an adversary has achieved privilege escalation. |
update |
104 |
|
Identifies the use of dsquery.exe for domain trust discovery purposes. Adversaries may use this command-line utility to enumerate trust relationships that may be used for Lateral Movement opportunities in Windows multi-domain forest environments. |
update |
2 |
|
Identifies the use of nltest.exe for domain trust discovery purposes. Adversaries may use this command-line utility to enumerate domain trusts and gain insight into trust relationships, as well as the state of Domain Controller (DC) replication in a Microsoft Windows NT Domain. |
update |
104 |
|
Identifies the execution of discovery commands to enumerate system information, files, and folders using the Windows Command Shell. |
update |
3 |
|
Detects the usage of gpresult.exe to query group policy objects. Attackers may query group policy objects during the reconnaissance phase after compromising a system to gain a better understanding of the active directory environment and possible methods to escalate privileges or move laterally. |
update |
2 |
|
Identifies attempts to enumerate hosts in a network using the built-in Windows net.exe tool. |
update |
104 |
|
Identifies use of the Windows file system utility (fsutil.exe) to gather information about attached peripheral devices and components connected to a computer system. |
update |
104 |
|
Detects scripts that contain PowerShell functions, structures, or Windows API functions related to windows share enumeration activities. Attackers, mainly ransomware groups, commonly identify and inspect network shares, looking for critical information for encryption and/or exfiltration. |
update |
5 |
|
PowerShell Suspicious Discovery Related Windows API Functions |
This rule detects the use of discovery-related Windows API functions in PowerShell Scripts. Attackers can use these functions to perform various situational awareness related activities, like enumerating users, shares, sessions, domain trusts, groups, etc. |
update |
106 |
Identifies domains commonly used by adversaries for post-exploitation IP lookups. It is common for adversaries to test for Internet access and acquire their external IP address after they have gained access to a system. Among others, this has been observed in campaigns leveraging the information stealer, Trickbot. |
update |
104 |
|
Identifies instances of an unusual process enumerating built-in Windows privileged local groups membership like Administrators or Remote Desktop users. |
update |
105 |
|
Discovery of remote system information using built-in commands, which may be used to move laterally. |
update |
105 |
|
Identifies the use of Windows Management Instrumentation Command (WMIC) to discover certain System Security Settings such as AntiVirus or Host Firewall details. |
update |
104 |
|
Detects the usage of commonly used system service discovery techniques, which attackers may use during the reconnaissance phase after compromising a system in order to gain a better understanding of the environment and/or escalate privileges. |
update |
2 |
|
Detects the usage of commonly used system time discovery techniques, which attackers may use during the reconnaissance phase after compromising a system. |
update |
2 |
|
Identifies suspicious use of whoami.exe which displays user, group, and privileges information for the user who is currently logged on to the local system. |
update |
105 |
|
A suspicious SolarWinds child process (Cmd.exe or Powershell.exe) was detected. |
update |
104 |
|
A suspicious SolarWinds child process was detected, which may indicate an attempt to execute malicious programs. |
update |
104 |
|
Windows Component Object Model (COM) is an inter-process communication (IPC) component of the native Windows application programming interface (API) that enables interaction between software objects or executable code. Xwizard can be used to run a COM object created in registry to evade defensive counter measures. |
update |
104 |
|
Identifies cmd.exe making a network connection. Adversaries could abuse cmd.exe to download or execute malware from a remote URL. |
update |
102 |
|
Identifies a suspicious parent child process relationship with cmd.exe descending from svchost.exe |
update |
104 |
|
Identifies a suspicious parent child process relationship with cmd.exe descending from an unusual process. |
update |
104 |
|
Identifies command shell activity started via RunDLL32, which is commonly abused by attackers to host malicious code. |
update |
104 |
|
Identifies native Windows host and network enumeration commands spawned by the Windows Management Instrumentation Provider Service (WMIPrvSE). |
update |
104 |
|
Identifies process execution from suspicious default Windows directories. This may be abused by adversaries to hide malware in trusted paths. |
update |
105 |
|
Compiled HTML files (.chm) are commonly distributed as part of the Microsoft HTML Help system. Adversaries may conceal malicious code in a CHM file and deliver it to a victim for execution. CHM content is loaded by the HTML Help executable program (hh.exe). |
update |
102 |
|
Identifies an executable created by a Microsoft Office application and subsequently executed. These processes are often launched via scripts inside documents or during exploitation of Microsoft Office applications. |
update |
104 |
|
Identifies a suspicious file that was written by a PDF reader application and subsequently executed. These processes are often launched via exploitation of PDF applications. |
update |
104 |
|
Detects known PowerShell offensive tooling functions names in PowerShell scripts. Attackers commonly use out-of-the-box offensive tools without modifying the code. This rule aim is to take advantage of that. |
update |
2 |
|
Detects the presence of a portable executable (PE) in a PowerShell script by looking for its encoded header. Attackers embed PEs into PowerShell scripts to inject them into memory, avoiding defences by not writing to disk. |
update |
105 |
|
Detects the use of PSReflect in PowerShell scripts. Attackers leverage PSReflect as a library that enables PowerShell to access win32 API functions. |
update |
105 |
|
Identifies use of the SysInternals tool PsExec.exe making a network connection. This could be an indication of lateral movement. |
update |
104 |
|
Identifies the native Windows tools regsvr32.exe, regsvr64.exe, RegSvcs.exe, or RegAsm.exe making a network connection. This may be indicative of an attacker bypassing allowlists or running arbitrary scripts via a signed Microsoft binary. |
update |
102 |
|
Identifies the PowerShell process loading the Task Scheduler COM DLL followed by an outbound RPC network connection within a short time period. This may indicate lateral movement or remote discovery via scheduled tasks. |
update |
102 |
|
Identifies the creation, change, or deletion of a DLL module within a Windows SxS local folder. Adversaries may abuse shared modules to execute malicious payloads by instructing the Windows module loader to load DLLs from arbitrary local paths. |
update |
103 |
|
Identifies suspicious command execution (cmd) via Windows Management Instrumentation (WMI) on a remote host. This could be indicative of adversary lateral movement. |
update |
104 |
|
Identifies a suspicious image load (wmiutils.dll) from Microsoft Office processes. This behavior may indicate adversarial activity where child processes are spawned via Windows Management Instrumentation (WMI). This technique can be used to execute code and evade traditional parent/child processes spawned from Microsoft Office products. |
update |
103 |
|
Identifies suspicious child processes of PDF reader applications. These child processes are often launched via exploitation of PDF applications or social engineering. |
update |
104 |
|
Identifies the PowerShell engine being invoked by unexpected processes. Rather than executing PowerShell functionality with powershell.exe, some attackers do this to operate more stealthily. |
update |
104 |
|
Identifies suspicious psexec activity which is executing from the psexec service that has been renamed, possibly to evade detection. |
update |
104 |
|
Compiled HTML files (.chm) are commonly distributed as part of the Microsoft HTML Help system. Adversaries may conceal malicious code in a CHM file and deliver it to a victim for execution. CHM content is loaded by the HTML Help executable program (hh.exe). |
update |
104 |
|
Detects when the Console Window Host (conhost.exe) process is spawned by a suspicious parent process, which could be indicative of code injection. |
update |
104 |
|
Identifies execution via MSSQL xp_cmdshell stored procedure. Malicious users may attempt to elevate their privileges by using xp_cmdshell, which is disabled by default, thus, it’s important to review the context of it’s use. |
update |
104 |
|
Identifies the deletion of backup files, saved using third-party software, by a process outside of the backup suite. Adversaries may delete Backup files to ensure that recovery from a ransomware attack is less likely. |
update |
104 |
|
Identifies use of the wbadmin.exe to delete the backup catalog. Ransomware and other malware may do this to prevent system recovery. |
update |
104 |
|
Identifies use of bcdedit.exe to delete boot configuration data. This tactic is sometimes used as by malware or an attacker as a destructive technique. |
update |
104 |
|
This rule identifies a high number (10) of process terminations (stop, delete, or suspend) from the same host within a short time period. |
update |
104 |
|
Identifies use of vssadmin.exe for shadow copy deletion or resizing on endpoints. This commonly occurs in tandem with ransomware or other destructive attacks. |
update |
105 |
|
Identifies the use of the Win32_ShadowCopy class and related cmdlets to achieve shadow copy deletion. This commonly occurs in tandem with ransomware or other destructive attacks. |
update |
104 |
|
Identifies use of wmic.exe for shadow copy deletion on endpoints. This commonly occurs in tandem with ransomware or other destructive attacks. |
update |
104 |
|
Identifies the execution of a browser process to open an HTML file with high entropy and size. Adversaries may smuggle data and files past content filters by hiding malicious payloads inside of seemingly benign HTML files. |
update |
102 |
|
Identifies a PowerShell process launched by either cscript.exe or wscript.exe. Observing Windows scripting processes executing a PowerShell script, may be indicative of malicious activity. |
update |
104 |
|
Identifies use of the built-in Windows script interpreters (cscript.exe or wscript.exe) being used to execute a process via Windows Management Instrumentation (WMI). This may be indicative of malicious activity. |
update |
104 |
|
Identifies suspicious files being written by the Microsoft Exchange Server Unified Messaging (UM) service. This activity has been observed exploiting CVE-2021-26858. |
update |
102 |
|
Identifies suspicious processes being spawned by the Microsoft Exchange Server Unified Messaging (UM) service. This activity has been observed exploiting CVE-2021-26857. |
update |
102 |
|
Identifies suspicious processes being spawned by the Microsoft Exchange Server worker process (w3wp). This activity may indicate exploitation activity or access to an existing web shell backdoor. |
update |
102 |
|
Identifies suspicious child processes of frequently targeted Microsoft Office applications (Word, PowerPoint, Excel). These child processes are often launched during exploitation of Office applications or from documents with malicious macros. |
update |
105 |
|
Identifies suspicious child processes of Microsoft Outlook. These child processes are often associated with spear phishing activity. |
update |
104 |
|
Identifies an unexpected process spawning from dns.exe, the process responsible for Windows DNS server services, which may indicate activity related to remote code execution or other forms of exploitation. |
update |
104 |
|
Identifies an unexpected file being modified by dns.exe, the process responsible for Windows DNS Server services, which may indicate activity related to remote code execution or other forms of exploitation. |
update |
104 |
|
Identifies a suspicious Windows explorer child process. Explorer.exe can be abused to launch malicious scripts or executables from a trusted parent process. |
update |
103 |
|
Identifies use of sc.exe to create, modify, or start services on remote hosts. This could be indicative of adversary lateral movement but will be noisy if commonly done by admins. |
update |
103 |
|
Identifies the use of Distributed Component Object Model (DCOM) to execute commands from a remote host, which are launched via the HTA Application COM Object. This behavior may indicate an attacker abusing a DCOM application to move laterally while attempting to evade detection. |
update |
103 |
|
Identifies the use of Distributed Component Object Model (DCOM) to run commands from a remote host, which are launched via the MMC20 Application COM Object. This behavior may indicate an attacker abusing a DCOM application to move laterally. |
update |
103 |
|
Incoming DCOM Lateral Movement with ShellBrowserWindow or ShellWindows |
Identifies use of Distributed Component Object Model (DCOM) to run commands from a remote host, which are launched via the ShellBrowserWindow or ShellWindows Application COM Object. This behavior may indicate an attacker abusing a DCOM application to stealthily move laterally. |
update |
103 |
Identifies NullSessionPipe registry modifications that specify which pipes can be accessed anonymously. This could be indicative of adversary lateral movement preparation by making the added pipe available to everyone. |
update |
103 |
|
Identifies unexpected processes making network connections over port 445. Windows File Sharing is typically implemented over Server Message Block (SMB), which communicates between hosts using port 445. When legitimate, these network connections are established by the kernel. Processes making 445/tcp connections may be port scanners, exploits, or suspicious user-level processes moving laterally. |
update |
104 |
|
Identifies the modification of the Remote Desktop Protocol (RDP) Shadow registry or the execution of processes indicative of an active RDP shadowing session. An adversary may abuse the RDP Shadowing feature to spy on or control other users active RDP sessions. |
update |
103 |
|
Identifies the creation or change of a Windows executable file over network shares. Adversaries may transfer tools or other files between systems in a compromised environment. |
update |
104 |
|
Identifies execution from the Remote Desktop Protocol (RDP) shared mountpoint tsclient on the target host. This may indicate a lateral movement attempt. |
update |
103 |
|
Identifies the execution of a file that was created by the virtual system process. This may indicate lateral movement via network file shares. |
update |
104 |
|
Identifies remote execution via Windows Remote Management (WinRM) remote shell on a target host. This could be an indication of lateral movement. |
update |
103 |
|
Identifies processes executed via Windows Management Instrumentation (WMI) on a remote host. This could be indicative of adversary lateral movement, but could be noisy if administrators use WMI to remotely manage hosts. |
update |
103 |
|
Identifies the use of net.exe to mount a WebDav or hidden remote share. This may indicate lateral movement or preparation for data exfiltration. |
update |
104 |
|
Identifies remote execution via Windows PowerShell remoting. Windows PowerShell remoting allows a user to run any Windows PowerShell command on one or more remote computers. This could be an indication of lateral movement. |
update |
103 |
|
Identifies registry write modifications to enable Remote Desktop Protocol (RDP) access. This could be indicative of adversary lateral movement preparation. |
update |
104 |
|
Identifies potential behavior of SharpRDP, which is a tool that can be used to perform authenticated command execution against a remote target via Remote Desktop Protocol (RDP) for the purposes of lateral movement. |
update |
103 |
|
Identifies a remote file copy attempt to a hidden network share. This may indicate lateral movement or data staging activity. |
update |
103 |
|
Identifies a network logon followed by Windows service creation with same LogonId. This could be indicative of lateral movement, but will be noisy if commonly done by administrators." |
update |
4 |
|
Identifies remote execution of Windows services over remote procedure call (RPC). This could be indicative of lateral movement, but will be noisy if commonly done by administrators." |
update |
104 |
|
Identifies a remote logon followed by a scheduled task creation on the target host. This could be indicative of adversary lateral movement. |
update |
4 |
|
Identifies remote scheduled task creations on a target host. This could be indicative of adversary lateral movement. |
update |
104 |
|
Identifies Service Control (sc.exe) spawning from script interpreter processes to create, modify, or start services. This could be indicative of adversary lateral movement but will be noisy if commonly done by admins. |
update |
103 |
|
Identifies suspicious Image Loading of the Remote Desktop Services ActiveX Client (mstscax), this may indicate the presence of RDP lateral movement capability. |
update |
102 |
|
Identifies suspicious file creations in the startup folder of a remote system. An adversary could abuse this to move laterally by dropping a malicious script or executable that will be executed after a reboot or user logon. |
update |
102 |
|
Detects modifications in the AdminSDHolder object. Attackers can abuse the SDProp process to implement a persistent backdoor in Active Directory. SDProp compares the permissions on protected objects with those defined on the AdminSDHolder object. If the permissions on any of the protected accounts and groups do not match, the permissions on the protected accounts and groups are reset to match those of the domain’s AdminSDHolder object, regaining their Administrative Privileges. |
update |
103 |
|
Detects writing executable files that will be automatically launched by Adobe on launch. |
update |
104 |
|
Identifies the installation of custom Application Compatibility Shim databases. This Windows functionality has been abused by attackers to stealthily gain persistence and arbitrary code execution in legitimate Windows processes. |
update |
103 |
|
Detects attempts to maintain persistence by creating registry keys using AppCert DLLs. AppCert DLLs are loaded by every process using the common API functions to create processes. |
update |
102 |
|
AppInit DLLs are dynamic-link libraries (DLLs) that are loaded into every process that creates a user interface (loads user32.dll) on Microsoft Windows operating systems. The AppInit DLL mechanism is used to load custom code into user-mode processes, allowing for the customization of the user interface and the behavior of Windows-based applications. Attackers who add those DLLs to the registry locations can execute code with elevated privileges, similar to process injection, and provide a solid and constant persistence on the machine. |
update |
102 |
|
Detects the creation and modification of an account with the "Don’t Expire Password" option Enabled. Attackers can abuse this misconfiguration to persist in the domain and maintain long-term access using compromised accounts with this property. |
update |
105 |
|
Identifies the creation of a hidden local user account by appending the dollar sign to the account name. This is sometimes done by attackers to increase access to a system and avoid appearing in the results of accounts listing using the net users command. |
update |
104 |
|
The Debugger and SilentProcessExit registry keys can allow an adversary to intercept the execution of files, causing a different process to be executed. This functionality can be abused by an adversary to establish persistence. |
update |
102 |
|
Identifies suspicious startup shell folder modifications to change the default Startup directory in order to bypass detections monitoring file creation in the Windows Startup folder. |
update |
104 |
|
Creation or Modification of a new GPO Scheduled Task or Service |
Detects the creation or modification of a new Group Policy based scheduled task or service. These methods are used for legitimate system administration, but can also be abused by an attacker with domain admin permissions to execute a malicious payload remotely on all or a subset of the domain joined machines. |
update |
103 |
A job can be used to schedule programs or scripts to be executed at a specified date and time. Adversaries may abuse task scheduling functionality to facilitate initial or recurring execution of malicious code. |
update |
102 |
|
Indicates the creation of a scheduled task. Adversaries can use these to establish persistence, move laterally, and/or escalate privileges. |
update |
103 |
|
A scheduled task was created by a Windows script via cscript.exe, wscript.exe or powershell.exe. This can be abused by an adversary to establish persistence. |
update |
102 |
|
Detects attempts to establish persistence on an endpoint by abusing Microsoft Office add-ins. |
update |
102 |
|
Detects attempts to establish persistence on an endpoint by installing a rogue Microsoft Outlook VBA Template. |
update |
102 |
|
Identifies the modification of the msDS-AllowedToDelegateTo attribute to KRBTGT. Attackers can use this technique to maintain persistence to the domain by having the ability to request tickets for the KRBTGT service. |
update |
103 |
|
Identifies the use of the Exchange PowerShell cmdlet, Set-CASMailbox, to add a new ActiveSync allowed device. Adversaries may target user email to collect sensitive information. |
update |
103 |
|
Identifies the creation or modification of a PowerShell profile. PowerShell profile is a script that is executed when PowerShell starts to customize the user environment, which can be abused by attackers to persist in a environment where PowerShell is common. |
update |
3 |
|
Windows contains accessibility features that may be launched with a key combination before a user has logged in. An adversary can modify the way these programs are launched to get a command prompt or backdoor without logging in to the system. |
update |
104 |
|
Detects changes to registry persistence keys that are not commonly used or modified by legitimate programs. This could be an indication of an adversary’s attempt to persist in a stealthy manner. |
update |
102 |
|
Identifies an attempt to reset a potentially privileged account password remotely. Adversaries may manipulate account passwords to maintain access or evade password duration policies and preserve compromised credentials. |
update |
104 |
|
Identifies run key or startup key registry modifications. In order to survive reboots and other system interrupts, attackers will modify run keys within the registry or leverage startup folder items as a form of persistence. |
update |
104 |
|
Identifies execution of suspicious persistent programs (scripts, rundll32, etc.) by looking at process lineage and command line usage. |
update |
103 |
|
Indicates the creation of a scheduled task using Windows event logs. Adversaries can use these to establish persistence, move laterally, and/or escalate privileges. |
update |
5 |
|
Indicates the update of a scheduled task using Windows event logs. Adversaries can use these to establish persistence, by changing the configuration of a legit scheduled task. Some changes such as disabling or enabling a scheduled task are common and may may generate noise. |
update |
5 |
|
Identifies a modification on the dsHeuristics attribute on the bit that holds the configuration of groups excluded from the SDProp process. The SDProp compares the permissions on protected objects with those defined on the AdminSDHolder object. If the permissions on any of the protected accounts and groups do not match, the permissions on the protected accounts and groups are reset to match those of the domain’s AdminSDHolder object, meaning that groups excluded will remain unchanged. Attackers can abuse this misconfiguration to maintain long-term access to privileged accounts in these groups. |
update |
105 |
|
Identifies an unsigned library created in the last 5 minutes and subsequently loaded by a shared windows service (svchost). Adversaries may use this technique to maintain persistence or run with System privileges. |
update |
2 |
|
Identifies the creation of a new Windows service with suspicious Service command values. Windows services typically run as SYSTEM and can be used for privilege escalation and persistence. |
update |
4 |
|
Identifies processes modifying the services registry key directly, instead of through the expected Windows APIs. This could be an indication of an adversary attempting to stealthily persist through abnormal service creation or modification of an existing service. |
update |
102 |
|
Identifies files written to or modified in the startup folder by commonly abused processes. Adversaries may use this technique to maintain persistence. |
update |
104 |
|
Identifies files written or modified in the startup folder by unsigned processes. Adversaries may abuse this technique to maintain persistence in an environment. |
update |
104 |
|
Identifies script engines creating files in the Startup folder, or the creation of script files in the Startup folder. Adversaries may abuse this technique to maintain persistence in an environment. |
update |
104 |
|
Identifies Component Object Model (COM) hijacking via registry modification. Adversaries may establish persistence by executing malicious content triggered by hijacked references to COM objects. |
update |
104 |
|
Identifies a suspicious image load (taskschd.dll) from Microsoft Office processes. This behavior may indicate adversarial activity where a scheduled task is configured via Windows Component Object Model (COM). This technique can be used to configure persistence and evade monitoring by avoiding the usage of the traditional Windows binary (schtasks.exe) used to manage scheduled tasks. |
update |
102 |
|
Identifies execution of a suspicious program via scheduled tasks by looking at process lineage and command line usage. |
update |
102 |
|
Identifies the creation of a suspicious ImagePath value. This could be an indication of an adversary attempting to stealthily persist or escalate privileges through abnormal service creation. |
update |
102 |
|
Windows services typically run as SYSTEM and can be used as a privilege escalation opportunity. Malware or penetration testers may run a shell as a service to gain SYSTEM permissions. |
update |
104 |
|
Indicates the creation and deletion of a scheduled task within a short time interval. Adversaries can use these to proxy malicious execution via the schedule service and perform clean up. |
update |
4 |
|
Identifies modification of the Time Provider. Adversaries may establish persistence by registering and enabling a malicious DLL as a time provider. Windows uses the time provider architecture to obtain accurate time stamps from other network devices or clients in the network. Time providers are implemented in the form of a DLL file which resides in the System32 folder. The service W32Time initiates during the startup of Windows and loads w32time.dll. |
update |
102 |
|
Identifies a user being added to a privileged group in Active Directory. Privileged accounts and groups in Active Directory are those to which powerful rights, privileges, and permissions are granted that allow them to perform nearly any action in Active Directory and on domain-joined systems. |
update |
105 |
|
Identifies attempts to create new users. This is sometimes done by attackers to increase access or establish persistence on a system or domain. |
update |
104 |
|
The Application Shim was created to allow for backward compatibility of software as the operating system codebase changes over time. This Windows functionality has been abused by attackers to stealthily gain persistence and arbitrary code execution in legitimate Windows processes. |
update |
104 |
|
An adversary can use the Background Intelligent Transfer Service (BITS) SetNotifyCmdLine method to execute a program that runs after a job finishes transferring data or after a job enters a specified state in order to persist on a system. |
update |
102 |
|
Identifies a persistence mechanism that utilizes the NtSetValueKey native API to create a hidden (null terminated) registry key. An adversary may use this method to hide from system utilities such as the Registry Editor (regedit). |
update |
102 |
|
Identifies registry modifications related to the Windows Security Support Provider (SSP) configuration. Adversaries may abuse this to establish persistence in an environment. |
update |
102 |
|
Detects the successful hijack of Microsoft Compatibility Appraiser scheduled task to establish persistence with an integrity level of system. |
update |
103 |
|
Identifies potential hijacking of the Microsoft Update Orchestrator Service to establish persistence with an integrity level of SYSTEM. |
update |
104 |
|
An adversary can use Windows Management Instrumentation (WMI) to install event filters, providers, consumers, and bindings that execute code when a defined event occurs. Adversaries may use the capabilities of WMI to subscribe to an event and execute arbitrary code when that event occurs, providing persistence on a system. |
update |
104 |
|
Identifies use of the Windows Management Instrumentation StdRegProv (registry provider) to modify commonly abused registry locations for persistence. |
update |
103 |
|
Web Shell Detection: Script Process Child of Common Web Processes |
Identifies suspicious commands executed via a web server, which may suggest a vulnerability and remote shell access. |
update |
104 |
Identifies process creation with alternate credentials. Adversaries may create a new process with a different token to escalate privileges and bypass access controls. |
update |
5 |
|
Identify the modification of the msPKIAccountCredentials attribute in an Active Directory User Object. Attackers can abuse the credentials roaming feature to overwrite an arbitrary file for privilege escalation. ms-PKI-AccountCredentials contains binary large objects (BLOBs) of encrypted credential objects from the credential manager store, private keys, certificates, and certificate requests. |
update |
4 |
|
User Account Control (UAC) can help mitigate the impact of malware on Windows hosts. With UAC, apps and tasks always run in the security context of a non-administrator account, unless an administrator specifically authorizes administrator-level access to the system. This rule identifies registry value changes to bypass User Access Control (UAC) protection. |
update |
104 |
|
Detects the modification of Group Policy Objects (GPO) to add a startup/logon script to users or computer objects. |
update |
105 |
|
Detects the first occurrence of a modification to Group Policy Object Attributes to add privileges to user accounts or use them to add users as local admins. |
update |
105 |
|
Detects the modification of Group Policy Object attributes to execute a scheduled task in the objects controlled by the GPO. |
update |
105 |
|
Identifies a potential exploitation of InstallerTakeOver (CVE-2021-41379) default PoC execution. Successful exploitation allows an unprivileged user to escalate privileges to SYSTEM. |
update |
104 |
|
Identifies a suspicious local successful logon event where the Logon Package is Kerberos, the remote address is set to localhost, followed by a sevice creation from the same LogonId. This may indicate an attempt to leverage a Kerberos relay attack variant that can be used to elevate privilege locally from a domain joined user to local System privileges. |
update |
103 |
|
Adversaries can use the autostart mechanism provided by the Local Security Authority (LSA) authentication packages for privilege escalation or persistence by placing a reference to a binary in the Windows registry. The binary will then be executed by SYSTEM when the authentication packages are loaded. |
update |
102 |
|
Identifies a privilege escalation attempt via named pipe impersonation. An adversary may abuse this technique by utilizing a framework such Metasploit’s meterpreter getsystem command. |
update |
103 |
|
Suspicious DLL Loaded for Persistence or Privilege Escalation |
Identifies the loading of a non Microsoft signed DLL that is missing on a default Windows install (phantom DLL) or one that can be loaded from a different location by a native Windows process. This may be abused to persist or elevate privileges via privileged file write vulnerabilities. |
update |
104 |
Potential Port Monitor or Print Processor Registration Abuse |
Identifies port monitor and print processor registry modifications. Adversaries may abuse port monitor and print processors to run malicious DLLs during system boot that will be executed as SYSTEM for privilege escalation and/or persistence, if permissions allow writing a fully-qualified pathname for that DLL. |
update |
102 |
Detects scripts that contain PowerShell functions, structures, or Windows API functions related to token impersonation/theft. Attackers may duplicate then impersonate another user’s token to escalate privileges and bypass access controls. |
update |
4 |
|
Detects attempts to exploit a privilege escalation vulnerability (CVE-2020-1030) related to the print spooler service. Exploitation involves chaining multiple primitives to load an arbitrary DLL into the print spooler process running as SYSTEM. |
update |
102 |
|
Detects attempts to exploit privilege escalation vulnerabilities related to the Print Spooler service. For more information refer to the following CVE’s - CVE-2020-1048, CVE-2020-1337 and CVE-2020-1300 and verify that the impacted system is patched. |
update |
102 |
|
Detects deletion of print driver files by an unusual process. This may indicate a clean up attempt post successful privilege escalation via Print Spooler service related vulnerabilities. |
update |
102 |
|
Detects attempts to exploit privilege escalation vulnerabilities related to the Print Spooler service including CVE-2020-1048 and CVE-2020-1337. |
update |
104 |
|
Identifies a privilege escalation attempt via a rogue Windows directory (Windir) environment variable. This is a known primitive that is often combined with other vulnerabilities to elevate privileges. |
update |
102 |
|
Identifies a suspicious computer account name rename event, which may indicate an attempt to exploit CVE-2021-42278 to elevate privileges from a standard domain user to a user with domain admin privileges. CVE-2021-42278 is a security vulnerability that allows potential attackers to impersonate a domain controller via samAccountName attribute spoofing. |
update |
103 |
|
Identifies the remote update to a computer account’s DnsHostName attribute. If the new value set is a valid domain controller DNS hostname and the subject computer name is not a domain controller, then it’s highly likely a preparation step to exploit CVE-2022-26923 in an attempt to elevate privileges from a standard domain user to domain admin privileges. |
update |
104 |
|
Identifies the creation of a process running as SYSTEM and impersonating a Windows core binary privileges. Adversaries may create a new process with a different token to escalate privileges and bypass access controls. |
update |
3 |
|
UAC Bypass Attempt with IEditionUpgradeManager Elevated COM Interface |
Identifies attempts to bypass User Account Control (UAC) by abusing an elevated COM Interface to launch a rogue Windows ClipUp program. Attackers may attempt to bypass UAC to stealthily execute code with elevated permissions. |
update |
103 |
UAC Bypass Attempt via Elevated COM Internet Explorer Add-On Installer |
Identifies User Account Control (UAC) bypass attempts by abusing an elevated COM Interface to launch a malicious program. Attackers may attempt to bypass UAC to stealthily execute code with elevated permissions. |
update |
103 |
Identifies User Account Control (UAC) bypass attempts via the ICMLuaUtil Elevated COM interface. Attackers may attempt to bypass UAC to stealthily execute code with elevated permissions. |
update |
103 |
|
Identifies User Account Control (UAC) bypass via hijacking DiskCleanup Scheduled Task. Attackers bypass UAC to stealthily execute code with elevated permissions. |
update |
102 |
|
UAC Bypass Attempt via Privileged IFileOperation COM Interface |
Identifies attempts to bypass User Account Control (UAC) via DLL side-loading. Attackers may attempt to bypass UAC to stealthily execute code with elevated permissions. |
update |
103 |
Identifies User Account Control (UAC) bypass via eventvwr.exe. Attackers bypass UAC to stealthily execute code with elevated permissions. |
update |
104 |
|
Identifies an attempt to bypass User Account Control (UAC) by masquerading as a Microsoft trusted Windows directory. Attackers may bypass UAC to stealthily execute code with elevated permissions. |
update |
104 |
|
Identifies attempts to bypass User Account Control (UAC) by hijacking the Microsoft Management Console (MMC) Windows Firewall snap-in. Attackers bypass UAC to stealthily execute code with elevated permissions. |
update |
104 |
|
Identifies Windows programs run from unexpected parent processes. This could indicate masquerading or other strange activity on a system. |
update |
104 |
|
Detects unusual Print Spooler service (spoolsv.exe) child processes. This may indicate an attempt to exploit privilege escalation vulnerabilities related to the Printing Service on Windows. |
update |
102 |
|
Identifies unusual child processes of Service Host (svchost.exe) that traditionally do not spawn any child processes. This may indicate a code injection or an equivalent form of exploitation. |
update |
103 |
|
Identifies parent process spoofing used to create an elevated child process. Adversaries may spoof the parent process identifier (PPID) of a new process to evade process-monitoring defenses or to elevate privileges. |
update |
3 |
|
Identifies a privilege escalation attempt via rogue named pipe impersonation. An adversary may abuse this technique by masquerading as a known named pipe and manipulating a privileged process to connect to it. |
update |
103 |
|
Identifies the creation of a process running as SYSTEM and impersonating a Windows core binary privileges. Adversaries may create a new process with a different token to escalate privileges and bypass access controls. |
update |
3 |
|
Identifies the creation of a Windows service by an unusual client process. Services may be created with administrator privileges but are executed under SYSTEM privileges, so an adversary may also use a service to escalate privileges from administrator to SYSTEM. |
update |
103 |
|
Google Workspace User Group Access Modified to Allow External Access |
User groups in Google Workspace are created to help manage users permissions and access to various resources and applications. The security label is only applied to a group when users within that group are expected to access sensitive data and/or resources so administrators add this label to easily manage security groups better. Adversaries with administrator access may modify a security group to allow external access from members outside the organization. This detection does not capture all modifications to security groups, but only those that could increase the risk associated with them. |
deprecated |
105 |