- X-Pack Reference for 6.0-6.2 and 5.x:
- Introduction
- Setting Up X-Pack
- Breaking Changes
- X-Pack APIs
- Graphing Connections in Your Data
- Profiling your Queries and Aggregations
- Reporting from Kibana
- Securing the Elastic Stack
- Getting Started with Security
- How Security Works
- Setting Up User Authentication
- Configuring SAML Single-Sign-On on the Elastic Stack
- Configuring Role-based Access Control
- Auditing Security Events
- Encrypting Communications
- Restricting Connections with IP Filtering
- Cross Cluster Search, Tribe, Clients and Integrations
- Reference
- Monitoring the Elastic Stack
- Alerting on Cluster and Index Events
- Machine Learning in the Elastic Stack
- Troubleshooting
- Getting Help
- X-Pack security
- Can’t log in after upgrading to 6.2.4
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- X-Pack Watcher
- X-Pack monitoring
- X-Pack machine learning
- Limitations
- License Management
- Release Notes
WARNING: Version 6.2 of the Elastic Stack has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Transforming Data With Script Fields
editTransforming Data With Script Fields
editIf you use datafeeds, you can add scripts to transform your data before
it is analyzed. Datafeeds contain an optional script_fields
property, where
you can specify scripts that evaluate custom expressions and return script
fields.
If your datafeed defines script fields, you can use those fields in your job. For example, you can use the script fields in the analysis functions in one or more detectors.
- Example 1: Adding two numerical fields
- Example 2: Concatenating strings
- Example 3: Trimming strings
- Example 4: Converting strings to lowercase
- Example 5: Converting strings to mixed case formats
- Example 6: Replacing tokens
- Example 7: Regular expression matching and concatenation
- Example 8: Splitting strings by domain name
- Example 9: Transforming geo_point data
The following indices APIs create and add content to an index that is used in subsequent examples:
PUT /my_index { "mappings":{ "my_type":{ "properties": { "@timestamp": { "type": "date" }, "aborted_count": { "type": "long" }, "another_field": { "type": "keyword" }, "clientip": { "type": "keyword" }, "coords": { "properties": { "lat": { "type": "keyword" }, "lon": { "type": "keyword" } } }, "error_count": { "type": "long" }, "query": { "type": "keyword" }, "some_field": { "type": "keyword" }, "tokenstring1":{ "type":"keyword" }, "tokenstring2":{ "type":"keyword" }, "tokenstring3":{ "type":"keyword" } } } } } PUT /my_index/my_type/1 { "@timestamp":"2017-03-23T13:00:00", "error_count":36320, "aborted_count":4156, "some_field":"JOE", "another_field":"SMITH ", "tokenstring1":"foo-bar-baz", "tokenstring2":"foo bar baz", "tokenstring3":"foo-bar-19", "query":"www.ml.elastic.co", "clientip":"123.456.78.900", "coords": { "lat" : 41.44, "lon":90.5 } }
In this example, string fields are mapped as |
Example 1: Adding two numerical fields.
PUT _xpack/ml/anomaly_detectors/test1 { "analysis_config":{ "bucket_span": "10m", "detectors":[ { "function":"mean", "field_name": "total_error_count", "detector_description": "Custom script field transformation" } ] }, "data_description": { "time_field":"@timestamp", "time_format":"epoch_ms" } } PUT _xpack/ml/datafeeds/datafeed-test1 { "job_id": "test1", "indices": ["my_index"], "types": ["my_type"], "query": { "match_all": { "boost": 1 } }, "script_fields": { "total_error_count": { "script": { "lang": "expression", "inline": "doc['error_count'].value + doc['aborted_count'].value" } } } }
A script field named |
|
The script field is defined in the datafeed. |
This test1
job contains a detector that uses a script field in a mean analysis
function. The datafeed-test1
datafeed defines the script field. It contains a
script that adds two fields in the document to produce a "total" error count.
The syntax for the script_fields
property is identical to that used by Elasticsearch.
For more information, see Script Fields.
You can preview the contents of the datafeed by using the following API:
GET _xpack/ml/datafeeds/datafeed-test1/_preview
In this example, the API returns the following results, which contain a sum of
the error_count
and aborted_count
values:
[ { "@timestamp": 1490274000000, "total_error_count": 40476 } ]
This example demonstrates how to use script fields, but it contains insufficient data to generate meaningful results. For a full demonstration of how to create jobs with sample data, see Getting Started.
You can alternatively use Kibana to create an advanced job that uses script
fields. To add the script_fields
property to your datafeed, you must use the
Edit JSON tab. For example:
Common Script Field Examples
editWhile the possibilities are limitless, there are a number of common scenarios where you might use script fields in your datafeeds.
Some of these examples use regular expressions. By default, regular expressions are disabled because they circumvent the protection that Painless provides against long running and memory hungry scripts. For more information, see Painless Scripting Language.
Machine learning analysis is case sensitive. For example, "John" is considered to be different than "john". This is one reason you might consider using scripts that convert your strings to upper or lowercase letters.
Example 2: Concatenating strings.
PUT _xpack/ml/anomaly_detectors/test2 { "analysis_config":{ "bucket_span": "10m", "detectors":[ { "function":"low_info_content", "field_name":"my_script_field", "detector_description": "Custom script field transformation" } ] }, "data_description": { "time_field":"@timestamp", "time_format":"epoch_ms" } } PUT _xpack/ml/datafeeds/datafeed-test2 { "job_id": "test2", "indices": ["my_index"], "types": ["my_type"], "query": { "match_all": { "boost": 1 } }, "script_fields": { "my_script_field": { "script": { "lang": "painless", "inline": "doc['some_field'].value + '_' + doc['another_field'].value" } } } } GET _xpack/ml/datafeeds/datafeed-test2/_preview
The script field has a rather generic name in this case, since it will be used for various tests in the subsequent examples. |
|
The script field uses the plus (+) operator to concatenate strings. |
The preview datafeed API returns the following results, which show that "JOE" and "SMITH " have been concatenated and an underscore was added:
[ { "@timestamp": 1490274000000, "my_script_field": "JOE_SMITH " } ]
POST _xpack/ml/datafeeds/datafeed-test2/_update { "script_fields": { "my_script_field": { "script": { "lang": "painless", "inline": "doc['another_field'].value.trim()" } } } } GET _xpack/ml/datafeeds/datafeed-test2/_preview
The preview datafeed API returns the following results, which show that "SMITH " has been trimmed to "SMITH":
[ { "@timestamp": 1490274000000, "my_script_field": "SMITH" } ]
Example 4: Converting strings to lowercase.
POST _xpack/ml/datafeeds/datafeed-test2/_update { "script_fields": { "my_script_field": { "script": { "lang": "painless", "inline": "doc['some_field'].value.toLowerCase()" } } } } GET _xpack/ml/datafeeds/datafeed-test2/_preview
This script field uses the |
The preview datafeed API returns the following results, which show that "JOE" has been converted to "joe":
[ { "@timestamp": 1490274000000, "my_script_field": "joe" } ]
Example 5: Converting strings to mixed case formats.
POST _xpack/ml/datafeeds/datafeed-test2/_update { "script_fields": { "my_script_field": { "script": { "lang": "painless", "inline": "doc['some_field'].value.substring(0, 1).toUpperCase() + doc['some_field'].value.substring(1).toLowerCase()" } } } } GET _xpack/ml/datafeeds/datafeed-test2/_preview
This script field is a more complicated example of case manipulation. It uses
the |
The preview datafeed API returns the following results, which show that "JOE" has been converted to "Joe":
[ { "@timestamp": 1490274000000, "my_script_field": "Joe" } ]
POST _xpack/ml/datafeeds/datafeed-test2/_update { "script_fields": { "my_script_field": { "script": { "lang": "painless", "inline": "/\\s/.matcher(doc['tokenstring2'].value).replaceAll('_')" } } } } GET _xpack/ml/datafeeds/datafeed-test2/_preview
The preview datafeed API returns the following results, which show that "foo bar baz" has been converted to "foo_bar_baz":
[ { "@timestamp": 1490274000000, "my_script_field": "foo_bar_baz" } ]
Example 7: Regular expression matching and concatenation.
POST _xpack/ml/datafeeds/datafeed-test2/_update { "script_fields": { "my_script_field": { "script": { "lang": "painless", "inline": "def m = /(.*)-bar-([0-9][0-9])/.matcher(doc['tokenstring3'].value); return m.find() ? m.group(1) + '_' + m.group(2) : '';" } } } } GET _xpack/ml/datafeeds/datafeed-test2/_preview
This script field looks for a specific regular expression pattern and emits the matched groups as a concatenated string. If no match is found, it emits an empty string. |
The preview datafeed API returns the following results, which show that "foo-bar-19" has been converted to "foo_19":
[ { "@timestamp": 1490274000000, "my_script_field": "foo_19" } ]
Example 8: Splitting strings by domain name.
PUT _xpack/ml/anomaly_detectors/test3 { "description":"DNS tunneling", "analysis_config":{ "bucket_span": "30m", "influencers": ["clientip","hrd"], "detectors":[ { "function":"high_info_content", "field_name": "sub", "over_field_name": "hrd", "exclude_frequent":"all" } ] }, "data_description": { "time_field":"@timestamp", "time_format":"epoch_ms" } } PUT _xpack/ml/datafeeds/datafeed-test3 { "job_id": "test3", "indices": ["my_index"], "types": ["my_type"], "query": { "match_all": { "boost": 1 } }, "script_fields":{ "sub":{ "script":"return domainSplit(doc['query'].value, params).get(0);" }, "hrd":{ "script":"return domainSplit(doc['query'].value, params).get(1);" } } } GET _xpack/ml/datafeeds/datafeed-test3/_preview
If you have a single field that contains a well-formed DNS domain name, you can
use the domainSplit()
function to split the string into its highest registered
domain and the sub-domain, which is everything to the left of the highest
registered domain. For example, the highest registered domain of
www.ml.elastic.co
is elastic.co
and the sub-domain is www.ml
. The
domainSplit()
function returns an array of two values: the first value is the
subdomain; the second value is the highest registered domain.
The domainSplit()
function takes two arguments. The first argument is
the string you want to split. The second argument is always params
. This is a
technical implementation detail related to how Painless operates internally.
The preview datafeed API returns the following results, which show that "www.ml.elastic.co" has been split into "elastic.co" and "www.ml":
[ { "@timestamp": 1490274000000, "clientip.keyword": "123.456.78.900", "hrd": "elastic.co", "sub": "www.ml" } ]
Example 9: Transforming geo_point data.
PUT _xpack/ml/anomaly_detectors/test4 { "analysis_config":{ "bucket_span": "10m", "detectors":[ { "function":"lat_long", "field_name": "my_coordinates" } ] }, "data_description": { "time_field":"@timestamp", "time_format":"epoch_ms" } } PUT _xpack/ml/datafeeds/datafeed-test4 { "job_id": "test4", "indices": ["my_index"], "types": ["my_type"], "query": { "match_all": { "boost": 1 } }, "script_fields": { "my_coordinates": { "script": { "inline": "doc['coords.lat'].value + ',' + doc['coords.lon'].value", "lang": "painless" } } } } GET _xpack/ml/datafeeds/datafeed-test4/_preview
In Elasticsearch, location data can be stored in geo_point
fields but this data type is
not supported natively in X-Pack machine learning analytics. This example of a script field
transforms the data into an appropriate format. For more information,
see Geographic Functions.
The preview datafeed API returns the following results, which show that
41.44
and 90.5
have been combined into "41.44,90.5":
[ { "@timestamp": 1490274000000, "my_coordinates": "41.44,90.5" } ]
On this page
ElasticON events are back!
Learn about the Elastic Search AI Platform from the experts at our live events.
Register now