- APM Python Agent: other versions:
- Introduction
- Set up the Agent
- Supported Technologies
- Configuration
- Advanced Topics
- API reference
- Metrics
- OpenTelemetry API Bridge
- Logs
- Performance tuning
- Troubleshooting
- Upgrading
- Release notes
Supported Technologies
editSupported Technologies
editThe Elastic APM Python Agent comes with support for the following frameworks:
For other frameworks and custom Python code, the agent exposes a set of APIs for integration.
Python
editThe following Python versions are supported:
- 3.6
- 3.7
- 3.8
- 3.9
- 3.10
- 3.11
- 3.12
Django
editWe support these Django versions:
- 1.11
- 2.0
- 2.1
- 2.2
- 3.0
- 3.1
- 3.2
- 4.0
- 4.2
- 5.0
For upcoming Django versions, we generally aim to ensure compatibility starting with the first Release Candidate.
we currently don’t support Django running in ASGI mode.
Flask
editWe support these Flask versions:
- 0.10 (Deprecated)
- 0.11 (Deprecated)
- 0.12 (Deprecated)
- 1.0
- 1.1
- 2.0
- 2.1
- 2.2
- 2.3
- 3.0
Aiohttp Server
editWe support these aiohttp versions:
- 3.0+
Tornado
editWe support these tornado versions:
- 6.0+
Sanic
editWe support these sanic versions:
- 20.12.2+
Starlette/FastAPI
editWe support these Starlette versions:
- 0.13.0+
Any FastAPI version which uses a supported Starlette version should also be supported.
GRPC
editWe support these grpcio
versions:
- 1.24.0+
Automatic Instrumentation
editThe Python APM agent comes with automatic instrumentation of various 3rd party modules and standard library modules.
Scheduling
editCelery
editWe support these Celery versions:
- 4.x (deprecated)
- 5.x
Celery tasks will be recorded automatically with Django and Flask only.
Databases
editElasticsearch
editInstrumented methods:
-
elasticsearch.transport.Transport.perform_request
-
elasticsearch.connection.http_urllib3.Urllib3HttpConnection.perform_request
-
elasticsearch.connection.http_requests.RequestsHttpConnection.perform_request
-
elasticsearch._async.transport.AsyncTransport.perform_request
-
elasticsearch_async.connection.AIOHttpConnection.perform_request
Additionally, the instrumentation wraps the following methods of the Elasticsearch
client class:
-
elasticsearch.client.Elasticsearch.delete_by_query
-
elasticsearch.client.Elasticsearch.search
-
elasticsearch.client.Elasticsearch.count
-
elasticsearch.client.Elasticsearch.update
Collected trace data:
- the query string (if available)
-
the
query
element from the request body (if available) - the response status code
- the count of affected rows (if available)
We recommend using keyword arguments only with elasticsearch-py, as recommended by
the elasticsearch-py docs.
If you are using positional arguments, we will be unable to gather the query
element from the request body.
SQLite
editInstrumented methods:
-
sqlite3.connect
-
sqlite3.dbapi2.connect
-
pysqlite2.dbapi2.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
MySQLdb
editLibrary: MySQLdb
Instrumented methods:
-
MySQLdb.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
mysql-connector
editLibrary: mysql-connector-python
Instrumented methods:
-
mysql.connector.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
pymysql
editLibrary: pymysql
Instrumented methods:
-
pymysql.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
aiomysql
editLibrary: aiomysql
Instrumented methods:
-
aiomysql.cursors.Cursor.execute
Collected trace data:
- parametrized SQL query
PostgreSQL
editLibrary: psycopg2
, psycopg2-binary
(>=2.9
)
Instrumented methods:
-
psycopg2.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
aiopg
editLibrary: aiopg
(>=1.0
)
Instrumented methods:
-
aiopg.cursor.Cursor.execute
-
aiopg.cursor.Cursor.callproc
Collected trace data:
- parametrized SQL query
asyncpg
editLibrary: asyncpg
(>=0.20
)
Instrumented methods:
-
asyncpg.connection.Connection.execute
-
asyncpg.connection.Connection.executemany
Collected trace data:
- parametrized SQL query
PyODBC
editLibrary: pyodbc
, (>=4.0
)
Instrumented methods:
-
pyodbc.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
MS-SQL
editLibrary: pymssql
, (>=2.1.0
)
Instrumented methods:
-
pymssql.connect
The instrumented connect
method returns a wrapped connection/cursor which instruments the actual Cursor.execute
calls.
Collected trace data:
- parametrized SQL query
MongoDB
editLibrary: pymongo
, >=2.9,<3.8
Instrumented methods:
-
pymongo.collection.Collection.aggregate
-
pymongo.collection.Collection.bulk_write
-
pymongo.collection.Collection.count
-
pymongo.collection.Collection.create_index
-
pymongo.collection.Collection.create_indexes
-
pymongo.collection.Collection.delete_many
-
pymongo.collection.Collection.delete_one
-
pymongo.collection.Collection.distinct
-
pymongo.collection.Collection.drop
-
pymongo.collection.Collection.drop_index
-
pymongo.collection.Collection.drop_indexes
-
pymongo.collection.Collection.ensure_index
-
pymongo.collection.Collection.find_and_modify
-
pymongo.collection.Collection.find_one
-
pymongo.collection.Collection.find_one_and_delete
-
pymongo.collection.Collection.find_one_and_replace
-
pymongo.collection.Collection.find_one_and_update
-
pymongo.collection.Collection.group
-
pymongo.collection.Collection.inline_map_reduce
-
pymongo.collection.Collection.insert
-
pymongo.collection.Collection.insert_many
-
pymongo.collection.Collection.insert_one
-
pymongo.collection.Collection.map_reduce
-
pymongo.collection.Collection.reindex
-
pymongo.collection.Collection.remove
-
pymongo.collection.Collection.rename
-
pymongo.collection.Collection.replace_one
-
pymongo.collection.Collection.save
-
pymongo.collection.Collection.update
-
pymongo.collection.Collection.update_many
-
pymongo.collection.Collection.update_one
Collected trace data:
- database name
- method name
Redis
editLibrary: redis
(>=2.8
)
Instrumented methods:
-
redis.client.Redis.execute_command
-
redis.client.Pipeline.execute
Collected trace data:
- Redis command name
aioredis
editLibrary: aioredis
(<2.0
)
Instrumented methods:
-
aioredis.pool.ConnectionsPool.execute
-
aioredis.commands.transaction.Pipeline.execute
-
aioredis.connection.RedisConnection.execute
Collected trace data:
- Redis command name
Cassandra
editLibrary: cassandra-driver
(>=3.4,<4.0
)
Instrumented methods:
-
cassandra.cluster.Session.execute
-
cassandra.cluster.Cluster.connect
Collected trace data:
- CQL query
Python Memcache
editLibrary: python-memcached
(>=1.51
)
Instrumented methods:
-
memcache.Client.add
-
memcache.Client.append
-
memcache.Client.cas
-
memcache.Client.decr
-
memcache.Client.delete
-
memcache.Client.delete_multi
-
memcache.Client.disconnect_all
-
memcache.Client.flush_all
-
memcache.Client.get
-
memcache.Client.get_multi
-
memcache.Client.get_slabs
-
memcache.Client.get_stats
-
memcache.Client.gets
-
memcache.Client.incr
-
memcache.Client.prepend
-
memcache.Client.replace
-
memcache.Client.set
-
memcache.Client.set_multi
-
memcache.Client.touch
Collected trace data:
- Destination (address and port)
pymemcache
editLibrary: pymemcache
(>=3.0
)
Instrumented methods:
-
pymemcache.client.base.Client.add
-
pymemcache.client.base.Client.append
-
pymemcache.client.base.Client.cas
-
pymemcache.client.base.Client.decr
-
pymemcache.client.base.Client.delete
-
pymemcache.client.base.Client.delete_many
-
pymemcache.client.base.Client.delete_multi
-
pymemcache.client.base.Client.flush_all
-
pymemcache.client.base.Client.get
-
pymemcache.client.base.Client.get_many
-
pymemcache.client.base.Client.get_multi
-
pymemcache.client.base.Client.gets
-
pymemcache.client.base.Client.gets_many
-
pymemcache.client.base.Client.incr
-
pymemcache.client.base.Client.prepend
-
pymemcache.client.base.Client.quit
-
pymemcache.client.base.Client.replace
-
pymemcache.client.base.Client.set
-
pymemcache.client.base.Client.set_many
-
pymemcache.client.base.Client.set_multi
-
pymemcache.client.base.Client.stats
-
pymemcache.client.base.Client.touch
Collected trace data:
- Destination (address and port)
kafka-python
editLibrary: kafka-python
(>=2.0
)
Instrumented methods:
-
kafka.KafkaProducer.send
, -
kafka.KafkaConsumer.poll
, -
kafka.KafkaConsumer.\__next__
Collected trace data:
- Destination (address and port)
- topic (if applicable)
External HTTP requests
editStandard library
editLibrary: urllib2
(Python 2) / urllib.request
(Python 3)
Instrumented methods:
-
urllib2.AbstractHTTPHandler.do_open
/urllib.request.AbstractHTTPHandler.do_open
Collected trace data:
- HTTP method
- requested URL
urllib3
editLibrary: urllib3
Instrumented methods:
-
urllib3.connectionpool.HTTPConnectionPool.urlopen
Additionally, we instrumented vendored instances of urllib3 in the following libraries:
-
requests
-
botocore
Both libraries have "unvendored" urllib3 in more recent versions, we recommend to use the newest versions.
Collected trace data:
- HTTP method
- requested URL
requests
editInstrumented methods:
-
requests.sessions.Session.send
Collected trace data:
- HTTP method
- requested URL
AIOHTTP Client
editInstrumented methods:
-
aiohttp.client.ClientSession._request
Collected trace data:
- HTTP method
- requested URL
httpx
editInstrumented methods:
- `httpx.Client.send
Collected trace data:
- HTTP method
- requested URL
Services
editAWS Boto3 / Botocore
editLibrary: boto3
(>=1.0
)
Instrumented methods:
-
botocore.client.BaseClient._make_api_call
Collected trace data for all services:
-
AWS region (e.g.
eu-central-1
) -
AWS service name (e.g.
s3
) -
operation name (e.g.
ListBuckets
)
Additionally, some services collect more specific data
AWS Aiobotocore
editLibrary: aiobotocore
(>=2.2.0
)
Instrumented methods:
-
aiobotocore.client.BaseClient._make_api_call
Collected trace data for all services:
-
AWS region (e.g.
eu-central-1
) -
AWS service name (e.g.
s3
) -
operation name (e.g.
ListBuckets
)
Additionally, some services collect more specific data
S3
edit- Bucket name
DynamoDB
edit- Table name
SNS
edit- Topic name
SQS
edit- Queue name
Template Engines
editDjango Template Language
editLibrary: Django
(see Django for supported versions)
Instrumented methods:
-
django.template.Template.render
Collected trace data:
- template name
Jinja2
editLibrary: jinja2
Instrumented methods:
-
jinja2.Template.render
Collected trace data:
- template name
On this page