- Java REST Client (deprecated): other versions:
- Overview
- Java High Level REST Client
- Getting started
- Document APIs
- Search APIs
- Async Search APIs
- Miscellaneous APIs
- Index APIs
- Analyze API
- Create Index API
- Delete Index API
- Index Exists API
- Open Index API
- Close Index API
- Shrink Index API
- Split Index API
- Clone Index API
- Refresh API
- Flush API
- Flush Synced API
- Clear Cache API
- Force Merge API
- Rollover Index API
- Update mapping API
- Get Mappings API
- Get Field Mappings API
- Index Aliases API
- Delete Alias API
- Exists Alias API
- Get Alias API
- Update Indices Settings API
- Get Settings API
- Create or update index template API
- Validate Query API
- Get Templates API
- Templates Exist API
- Get Index API
- Freeze Index API
- Unfreeze Index API
- Delete Template API
- Reload Search Analyzers API
- Get Composable Index Templates API
- Create or update composable index template API
- Delete Composable Index Template API
- Optional arguments
- Simulate Index Template API
- Cluster APIs
- Ingest APIs
- Snapshot APIs
- Tasks APIs
- Script APIs
- Licensing APIs
- Machine Learning APIs
- Close anomaly detection jobs API
- Delete anomaly detection jobs API
- Delete anomaly detection jobs from calendar API
- Delete calendar events API
- Delete calendars API
- Delete data frame analytics jobs API
- Delete datafeeds API
- Delete expired data API
- Delete filters API
- Delete forecasts API
- Delete model snapshots API
- Delete trained models API
- Delete trained model alias API
- Estimate anomaly detection job model memory API
- Evaluate data frame analytics API
- Explain data frame analytics API
- Flush jobs API
- Forecast jobs API
- Get anomaly detection jobs API
- Get anomaly detection job stats API
- Get buckets API
- Get calendar events API
- Get calendars API
- Get categories API
- Get data frame analytics jobs API
- Get data frame analytics jobs stats API
- Get datafeeds API
- Get datafeed stats API
- Get filters API
- Get influencers API
- Get machine learning info API
- Get model snapshots API
- Get overall buckets API
- Get records API
- Get trained models API
- Get trained models stats API
- Open anomaly detection jobs API
- Post calendar events API
- Post data API
- Preview datafeeds API
- Create anomaly detection jobs API
- Add anomaly detection jobs to calendar API
- Create calendars API
- Create data frame analytics jobs API
- Create datafeeds API
- Create filters API
- Create trained models API
- Create or update trained model alias API
- Reset anomaly detection jobs API
- Revert model snapshots API
- Set upgrade mode API
- Start data frame analytics jobs API
- Start datafeeds API
- Stop data frame analytics jobs API
- Stop datafeeds API
- Update anomaly detection jobs API
- Update data frame analytics jobs API
- Update datafeeds API
- Update filters API
- Update model snapshots API
- Upgrade job snapshot API
- Migration APIs
- Rollup APIs
- Security APIs
- Create or update user API
- Get Users API
- Delete User API
- Enable User API
- Disable User API
- Change Password API
- Create or update role API
- Get Roles API
- Delete Role API
- Delete Privileges API
- Get Builtin Privileges API
- Get Application Privileges API
- Clear Roles Cache API
- Clear Privileges Cache API
- Clear Realm Cache API
- Clear API Key Cache API
- Clear Service Account Token Cache API
- Authenticate API
- Has Privileges API
- Get User Privileges API
- SSL Certificate API
- Create or update role mapping API
- Get Role Mappings API
- Delete Role Mapping API
- Create Token API
- Invalidate Token API
- Create or update privileges API
- Create API Key API
- Grant API key API
- Get API Key information API
- Invalidate API Key API
- Query API Key information API
- Get Service Accounts API
- Create Service Account Token API
- Delete Service Account Token API
- Get Service Account Credentials API
- Text Structure APIs
- Watcher APIs
- Graph APIs
- CCR APIs
- Index Lifecycle Management APIs
- Snapshot Lifecycle Management APIs
- Create or update snapshot lifecycle policy API
- Delete Snapshot Lifecycle Policy API
- Get Snapshot Lifecycle Policy API
- Start Snapshot Lifecycle Management API
- Stop Snapshot Lifecycle Management API
- Snapshot Lifecycle Management Status API
- Execute Snapshot Lifecycle Policy API
- Execute Snapshot Lifecycle Retention API
- Searchable Snapshots APIs
- Transform APIs
- Enrich APIs
- EQL APIs
- Using Java Builders
- Migration Guide
- License
WARNING: Deprecated in 7.15.0.
The Java REST Client is deprecated in favor of the Java API Client.
Ranking Evaluation API
editRanking Evaluation API
editThe rankEval
method allows to evaluate the quality of ranked search
results over a set of search request. Given sets of manually rated
documents for each search request, ranking evaluation performs a
multi search request and calculates
information retrieval metrics like mean reciprocal rank, precision
or discounted cumulative gain on the returned results.
Ranking Evaluation Request
editIn order to build a RankEvalRequest
, you first need to create an
evaluation specification (RankEvalSpec
). This specification requires
to define the evaluation metric that is going to be calculated, as well
as a list of rated documents per search requests. Creating the ranking
evaluation request then takes the specification and a list of target
indices as arguments:
EvaluationMetric metric = new PrecisionAtK(); List<RatedDocument> ratedDocs = new ArrayList<>(); ratedDocs.add(new RatedDocument("posts", "1", 1)); SearchSourceBuilder searchQuery = new SearchSourceBuilder(); searchQuery.query(QueryBuilders.matchQuery("user", "kimchy")); RatedRequest ratedRequest = new RatedRequest("kimchy_query", ratedDocs, searchQuery); List<RatedRequest> ratedRequests = Arrays.asList(ratedRequest); RankEvalSpec specification = new RankEvalSpec(ratedRequests, metric); RankEvalRequest request = new RankEvalRequest(specification, new String[] { "posts" });
Synchronous Execution
editThe rankEval
method executes `RankEvalRequest`s synchronously:
RankEvalResponse response = client.rankEval(request, RequestOptions.DEFAULT);
Asynchronous Execution
editThe rankEvalAsync
method executes RankEvalRequest`s asynchronously,
calling the provided `ActionListener
when the response is ready.
The asynchronous method does not block and returns immediately. Once it is
completed the ActionListener
is called back using the onResponse
method
if the execution successfully completed or using the onFailure
method if
it failed.
A typical listener for RankEvalResponse
looks like:
RankEvalResponse
editThe RankEvalResponse
that is returned by executing the request
contains information about the overall evaluation score, the
scores of each individual search request in the set of queries and
detailed information about search hits and details about the metric
calculation per partial result.
double evaluationResult = response.getMetricScore(); assertEquals(1.0 / 3.0, evaluationResult, 0.0); Map<String, EvalQueryQuality> partialResults = response.getPartialResults(); EvalQueryQuality evalQuality = partialResults.get("kimchy_query"); assertEquals("kimchy_query", evalQuality.getId()); double qualityLevel = evalQuality.metricScore(); assertEquals(1.0 / 3.0, qualityLevel, 0.0); List<RatedSearchHit> hitsAndRatings = evalQuality.getHitsAndRatings(); RatedSearchHit ratedSearchHit = hitsAndRatings.get(2); assertEquals("3", ratedSearchHit.getSearchHit().getId()); assertFalse(ratedSearchHit.getRating().isPresent()); MetricDetail metricDetails = evalQuality.getMetricDetails(); String metricName = metricDetails.getMetricName(); assertEquals(PrecisionAtK.NAME, metricName); PrecisionAtK.Detail detail = (PrecisionAtK.Detail) metricDetails; assertEquals(1, detail.getRelevantRetrieved()); assertEquals(3, detail.getRetrieved());
The overall evaluation result |
|
Partial results that are keyed by their query id |
|
The metric score for each partial result |
|
Rated search hits contain a fully fledged |
|
Rated search hits also contain an |
|
Metric details are named after the metric used in the request |
|
After casting to the metric used in the request, the metric details offers insight into parts of the metric calculation |
ElasticON events are back!
Learn about the Elastic Search AI Platform from the experts at our live events.
Register now