- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- API conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Scripting
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Char Group Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Multiplexer Token Filter
- Conditional Token Filter
- Predicate Token Filter Script
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Parsing synonym files
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Exclude mode settings example
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- MinHash Token Filter
- Remove Duplicates Token Filter
- Character Filters
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- Managing the index lifecycle
- Getting started with index lifecycle management
- Policy phases and actions
- Set up index lifecycle management policy
- Using policies to manage index rollover
- Update policy
- Index lifecycle error handling
- Restoring snapshots of managed indices
- Start and stop index lifecycle management
- Using ILM with existing indices
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Set up a cluster for high availability
- Roll up or transform your data
- X-Pack APIs
- Info API
- Cross-cluster replication APIs
- Explore API
- Freeze index
- Index lifecycle management API
- Licensing APIs
- Machine learning APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get calendars
- Get buckets
- Get overall buckets
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Migration APIs
- Rollup APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect Authenticate API
- OpenID Connect Logout API
- SSL certificate
- Transform APIs
- Unfreeze index
- Watcher APIs
- Definitions
- Secure a cluster
- Overview
- Configuring security
- Encrypting communications in Elasticsearch
- Encrypting communications in an Elasticsearch Docker Container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Configuring a Kerberos realm
- Security files
- FIPS 140-2
- How security works
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Testing
- Glossary of terms
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Scroll
editScroll
editWhile a search
request returns a single “page” of results, the scroll
API can be used to retrieve large numbers of results (or even all results)
from a single search request, in much the same way as you would use a cursor
on a traditional database.
Scrolling is not intended for real time user requests, but rather for processing large amounts of data, e.g. in order to reindex the contents of one index into a new index with a different configuration.
The results that are returned from a scroll request reflect the state of
the index at the time that the initial search
request was made, like a
snapshot in time. Subsequent changes to documents (index, update or delete)
will only affect later search requests.
In order to use scrolling, the initial search request should specify the
scroll
parameter in the query string, which tells Elasticsearch how long it
should keep the “search context” alive (see Keeping the search context alive), eg ?scroll=1m
.
POST /twitter/_search?scroll=1m { "size": 100, "query": { "match" : { "title" : "elasticsearch" } } }
The result from the above request includes a _scroll_id
, which should
be passed to the scroll
API in order to retrieve the next batch of
results.
POST /_search/scroll { "scroll" : "1m", "scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==" }
|
|
The |
|
The |
The size
parameter allows you to configure the maximum number of hits to be
returned with each batch of results. Each call to the scroll
API returns the
next batch of results until there are no more results left to return, ie the
hits
array is empty.
The initial search request and each subsequent scroll request each
return a _scroll_id
. While the _scroll_id
may change between requests, it doesn’t
always change — in any case, only the most recently received _scroll_id
should be used.
If the request specifies aggregations, only the initial search response will contain the aggregations results.
Scroll requests have optimizations that make them faster when the sort
order is _doc
. If you want to iterate over all documents regardless of the
order, this is the most efficient option:
GET /_search?scroll=1m { "sort": [ "_doc" ] }
Keeping the search context alive
editA scroll returns all the documents which matched the search at the time of the
initial search request. It ignores any subsequent changes to these documents.
The scroll_id
identifies a search context which keeps track of everything
that Elasticsearch needs to return the correct documents. The search context is created
by the initial request and kept alive by subsequent requests.
The scroll
parameter (passed to the search
request and to every scroll
request) tells Elasticsearch how long it should keep the search context alive.
Its value (e.g. 1m
, see Time units) does not need to be long enough to
process all data — it just needs to be long enough to process the previous
batch of results. Each scroll
request (with the scroll
parameter) sets a
new expiry time. If a scroll
request doesn’t pass in the scroll
parameter, then the search context will be freed as part of that scroll
request.
Normally, the background merge process optimizes the index by merging together smaller segments to create new, bigger segments. Once the smaller segments are no longer needed they are deleted. This process continues during scrolling, but an open search context prevents the old segments from being deleted since they are still in use.
Keeping older segments alive means that more disk space and file handles are needed. Ensure that you have configured your nodes to have ample free file handles. See File Descriptors.
Additionally, if a segment contains deleted or updated documents then the search context must keep track of whether each document in the segment was live at the time of the initial search request. Ensure that your nodes have sufficient heap space if you have many open scrolls on an index that is subject to ongoing deletes or updates.
To prevent against issues caused by having too many scrolls open, the
user is not allowed to open scrolls past a certain limit. By default, the
maximum number of open scrolls is 500. This limit can be updated with the
search.max_open_scroll_context
cluster setting.
You can check how many search contexts are open with the nodes stats API:
GET /_nodes/stats/indices/search
Clear scroll API
editSearch context are automatically removed when the scroll
timeout has been
exceeded. However keeping scrolls open has a cost, as discussed in the
previous section so scrolls should be explicitly
cleared as soon as the scroll is not being used anymore using the
clear-scroll
API:
DELETE /_search/scroll { "scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==" }
Multiple scroll IDs can be passed as array:
DELETE /_search/scroll { "scroll_id" : [ "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==", "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB" ] }
All search contexts can be cleared with the _all
parameter:
DELETE /_search/scroll/_all
The scroll_id
can also be passed as a query string parameter or in the request body.
Multiple scroll IDs can be passed as comma separated values:
DELETE /_search/scroll/DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==,DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB
Sliced Scroll
editFor scroll queries that return a lot of documents it is possible to split the scroll in multiple slices which can be consumed independently:
GET /twitter/_search?scroll=1m { "slice": { "id": 0, "max": 2 }, "query": { "match" : { "title" : "elasticsearch" } } } GET /twitter/_search?scroll=1m { "slice": { "id": 1, "max": 2 }, "query": { "match" : { "title" : "elasticsearch" } } }
The result from the first request returned documents that belong to the first slice (id: 0) and the result from the
second request returned documents that belong to the second slice. Since the maximum number of slices is set to 2
the union of the results of the two requests is equivalent to the results of a scroll query without slicing.
By default the splitting is done on the shards first and then locally on each shard using the _id field
with the following formula:
slice(doc) = floorMod(hashCode(doc._id), max)
For instance if the number of shards is equal to 2 and the user requested 4 slices then the slices 0 and 2 are assigned
to the first shard and the slices 1 and 3 are assigned to the second shard.
Each scroll is independent and can be processed in parallel like any scroll request.
If the number of slices is bigger than the number of shards the slice filter is very slow on the first calls, it has a complexity of O(N) and a memory cost equals to N bits per slice where N is the total number of documents in the shard. After few calls the filter should be cached and subsequent calls should be faster but you should limit the number of sliced query you perform in parallel to avoid the memory explosion.
To avoid this cost entirely it is possible to use the doc_values
of another field to do the slicing
but the user must ensure that the field has the following properties:
- The field is numeric.
-
doc_values
are enabled on that field - Every document should contain a single value. If a document has multiple values for the specified field, the first value is used.
- The value for each document should be set once when the document is created and never updated. This ensures that each slice gets deterministic results.
- The cardinality of the field should be high. This ensures that each slice gets approximately the same amount of documents.
GET /twitter/_search?scroll=1m { "slice": { "field": "date", "id": 0, "max": 10 }, "query": { "match" : { "title" : "elasticsearch" } } }
For append only time-based indices, the timestamp
field can be used safely.
By default the maximum number of slices allowed per scroll is limited to 1024.
You can update the index.max_slices_per_scroll
index setting to bypass this limit.