- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.0
- Quick start
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Registered domain
- Remove
- Rename
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Sort search results
- kNN search
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Tutorial: Customize built-in policies
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled
- Configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model deployment
- Start trained model deployment
- Stop trained model deployment
- Migration APIs
- Node lifecycle APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Dependencies and versions
Nested field type
editNested field type
editThe nested
type is a specialised version of the object
data type
that allows arrays of objects to be indexed in a way that they can be queried
independently of each other.
When ingesting key-value pairs with a large, arbitrary set of keys, you might consider modeling each key-value pair as its own nested document with key
and value
fields. Instead, consider using the flattened data type, which maps an entire object as a single field and allows for simple searches over its contents.
Nested documents and queries are typically expensive, so using the flattened
data type for this use case is a better option.
How arrays of objects are flattened
editElasticsearch has no concept of inner objects. Therefore, it flattens object hierarchies into a simple list of field names and values. For instance, consider the following document:
response = client.index( index: 'my-index-000001', id: 1, body: { group: 'fans', user: [ { first: 'John', last: 'Smith' }, { first: 'Alice', last: 'White' } ] } ) puts response
res, err := es.Index( "my-index-000001", strings.NewReader(`{ "group": "fans", "user": [ { "first": "John", "last": "Smith" }, { "first": "Alice", "last": "White" } ] }`), es.Index.WithDocumentID("1"), es.Index.WithPretty(), ) fmt.Println(res, err)
PUT my-index-000001/_doc/1 { "group" : "fans", "user" : [ { "first" : "John", "last" : "Smith" }, { "first" : "Alice", "last" : "White" } ] }
The previous document would be transformed internally into a document that looks more like this:
{ "group" : "fans", "user.first" : [ "alice", "john" ], "user.last" : [ "smith", "white" ] }
The user.first
and user.last
fields are flattened into multi-value fields,
and the association between alice
and white
is lost. This document would
incorrectly match a query for alice AND smith
:
response = client.search( index: 'my-index-000001', body: { query: { bool: { must: [ { match: { "user.first": 'Alice' } }, { match: { "user.last": 'Smith' } } ] } } } ) puts response
res, err := es.Search( es.Search.WithIndex("my-index-000001"), es.Search.WithBody(strings.NewReader(`{ "query": { "bool": { "must": [ { "match": { "user.first": "Alice" } }, { "match": { "user.last": "Smith" } } ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
GET my-index-000001/_search { "query": { "bool": { "must": [ { "match": { "user.first": "Alice" }}, { "match": { "user.last": "Smith" }} ] } } }
Using nested
fields for arrays of objects
editIf you need to index arrays of objects and to maintain the independence of
each object in the array, use the nested
data type instead of the
object
data type.
Internally, nested objects index each object in
the array as a separate hidden document, meaning that each nested object can be
queried independently of the others with the nested
query:
response = client.indices.create( index: 'my-index-000001', body: { mappings: { properties: { user: { type: 'nested' } } } } ) puts response response = client.indices.create( index: 'my-index-000001', id: 1, body: { group: 'fans', user: [ { first: 'John', last: 'Smith' }, { first: 'Alice', last: 'White' } ] } ) puts response response = client.indices.create( index: 'my-index-000001', body: { query: { nested: { path: 'user', query: { bool: { must: [ { match: { "user.first": 'Alice' } }, { match: { "user.last": 'Smith' } } ] } } } } } ) puts response response = client.indices.create( index: 'my-index-000001', body: { query: { nested: { path: 'user', query: { bool: { must: [ { match: { "user.first": 'Alice' } }, { match: { "user.last": 'White' } } ] } }, inner_hits: { highlight: { fields: { "user.first": { } } } } } } } ) puts response
{ res, err := es.Indices.Create( "my-index-000001", es.Indices.Create.WithBody(strings.NewReader(`{ "mappings": { "properties": { "user": { "type": "nested" } } } }`)), ) fmt.Println(res, err) } { res, err := es.Index( "my-index-000001", strings.NewReader(`{ "group": "fans", "user": [ { "first": "John", "last": "Smith" }, { "first": "Alice", "last": "White" } ] }`), es.Index.WithDocumentID("1"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Search( es.Search.WithIndex("my-index-000001"), es.Search.WithBody(strings.NewReader(`{ "query": { "nested": { "path": "user", "query": { "bool": { "must": [ { "match": { "user.first": "Alice" } }, { "match": { "user.last": "Smith" } } ] } } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Search( es.Search.WithIndex("my-index-000001"), es.Search.WithBody(strings.NewReader(`{ "query": { "nested": { "path": "user", "query": { "bool": { "must": [ { "match": { "user.first": "Alice" } }, { "match": { "user.last": "White" } } ] } }, "inner_hits": { "highlight": { "fields": { "user.first": {} } } } } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err) }
PUT my-index-000001 { "mappings": { "properties": { "user": { "type": "nested" } } } } PUT my-index-000001/_doc/1 { "group" : "fans", "user" : [ { "first" : "John", "last" : "Smith" }, { "first" : "Alice", "last" : "White" } ] } GET my-index-000001/_search { "query": { "nested": { "path": "user", "query": { "bool": { "must": [ { "match": { "user.first": "Alice" }}, { "match": { "user.last": "Smith" }} ] } } } } } GET my-index-000001/_search { "query": { "nested": { "path": "user", "query": { "bool": { "must": [ { "match": { "user.first": "Alice" }}, { "match": { "user.last": "White" }} ] } }, "inner_hits": { "highlight": { "fields": { "user.first": {} } } } } } }
Interacting with nested
documents
editNested documents can be:
-
queried with the
nested
query. -
analyzed with the
nested
andreverse_nested
aggregations. - sorted with nested sorting.
- retrieved and highlighted with nested inner hits.
Because nested documents are indexed as separate documents, they can only be
accessed within the scope of the nested
query, the
nested
/reverse_nested
aggregations, or nested inner hits.
For instance, if a string field within a nested document has
index_options
set to offsets
to allow use of the postings
during the highlighting, these offsets will not be available during the main highlighting
phase. Instead, highlighting needs to be performed via
nested inner hits. The same consideration applies when loading
fields during a search through docvalue_fields
or stored_fields
.
Parameters for nested
fields
editThe following parameters are accepted by nested
fields:
-
dynamic
-
(Optional, string)
Whether or not new
properties
should be added dynamically to an existing nested object. Acceptstrue
(default),false
andstrict
. -
properties
-
(Optional, object)
The fields within the nested object, which can be of any
data type, including
nested
. New properties may be added to an existing nested object. -
include_in_parent
-
(Optional, Boolean)
If
true
, all fields in the nested object are also added to the parent document as standard (flat) fields. Defaults tofalse
. -
include_in_root
-
(Optional, Boolean)
If
true
, all fields in the nested object are also added to the root document as standard (flat) fields. Defaults tofalse
.
Limits on nested
mappings and objects
editAs described earlier, each nested object is indexed as a separate Lucene document.
Continuing with the previous example, if we indexed a single document containing 100 user
objects,
then 101 Lucene documents would be created: one for the parent document, and one for each
nested object. Because of the expense associated with nested
mappings, Elasticsearch puts
settings in place to guard against performance problems:
-
index.mapping.nested_fields.limit
-
The maximum number of distinct
nested
mappings in an index. Thenested
type should only be used in special cases, when arrays of objects need to be queried independently of each other. To safeguard against poorly designed mappings, this setting limits the number of uniquenested
types per index. Default is50
.
In the previous example, the user
mapping would count as only 1 towards this limit.
-
index.mapping.nested_objects.limit
-
The maximum number of nested JSON objects that a single document can contain across all
nested
types. This limit helps to prevent out of memory errors when a document contains too many nested objects. Default is10000
.
To illustrate how this setting works, consider adding another nested
type called comments
to the previous example mapping. For each document, the combined number of user
and comment
objects it contains must be below the limit.
See Settings to prevent mapping explosion regarding additional settings for preventing mappings explosion.
On this page