- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.2
- Quick start
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Registered domain
- Remove
- Rename
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Sort search results
- kNN search
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model deployment
- Start trained model deployment
- Stop trained model deployment
- Migration APIs
- Node lifecycle APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profile
- Suggest user profile
- Update user profile data
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Discovery
editDiscovery
editDiscovery is the process by which the cluster formation module finds other nodes with which to form a cluster. This process runs when you start an Elasticsearch node or when a node believes the master node failed and continues until the master node is found or a new master node is elected.
This process starts with a list of seed addresses from one or more seed hosts providers, together with the addresses of any master-eligible nodes that were in the last-known cluster. The process operates in two phases: First, each node probes the seed addresses by connecting to each address and attempting to identify the node to which it is connected and to verify that it is master-eligible. Secondly, if successful, it shares with the remote node a list of all of its known master-eligible peers and the remote node responds with its peers in turn. The node then probes all the new nodes that it just discovered, requests their peers, and so on.
If the node is not master-eligible then it continues this discovery process
until it has discovered an elected master node. If no elected master is
discovered then the node will retry after discovery.find_peers_interval
which
defaults to 1s
.
If the node is master-eligible then it continues this discovery process until
it has either discovered an elected master node or else it has discovered
enough masterless master-eligible nodes to complete an election. If neither of
these occur quickly enough then the node will retry after
discovery.find_peers_interval
which defaults to 1s
.
Once a master is elected, it will normally remain as the elected master until it is deliberately stopped. It may also stop acting as the master if fault detection determines the cluster to be faulty. When a node stops being the elected master, it begins the discovery process again.
Troubleshooting discovery
editIn most cases, the discovery and election process completes quickly, and the master node remains elected for a long period of time.
If your cluster doesn’t have a stable master, many of its features won’t work correctly and Elasticsearch will report errors to clients and in its logs. You must fix the master node’s instability before addressing these other issues. It will not be possible to solve any other issues while there is no elected master node or the elected master node is unstable.
If your cluster has a stable master but some nodes can’t discover or join it, these nodes will report errors to clients and in their logs. You must address the obstacles preventing these nodes from joining the cluster before addressing other issues. It will not be possible to solve any other issues reported by these nodes while they are unable to join the cluster.
If the cluster has no elected master node for more than a few seconds, the master is unstable, or some nodes are unable to discover or join a stable master, then Elasticsearch will record information in its logs explaining why. If the problems persist for more than a few minutes, Elasticsearch will record additional information in its logs. To properly troubleshoot discovery and election problems, collect and analyse logs covering at least five minutes from all nodes.
The following sections describe some common discovery and election problems.
No master is elected
editWhen a node wins the master election, it logs a message containing
elected-as-master
and all nodes log a message containing
master node changed
identifying the new elected master node.
If there is no elected master node and no node can win an election, all
nodes will repeatedly log messages about the problem using a logger called
org.elasticsearch.cluster.coordination.ClusterFormationFailureHelper
. By
default, this happens every 10 seconds.
Master elections only involve master-eligible nodes, so focus on the logs from master-eligible nodes in this situation. These nodes' logs will indicate the requirements for a master election, such as the discovery of a certain set of nodes.
If the logs indicate that Elasticsearch can’t discover enough nodes to form a quorum, you must address the reasons preventing Elasticsearch from discovering the missing nodes. The missing nodes are needed to reconstruct the cluster metadata. Without the cluster metadata, the data in your cluster is meaningless. The cluster metadata is stored on a subset of the master-eligible nodes in the cluster. If a quorum can’t be discovered, the missing nodes were the ones holding the cluster metadata.
Ensure there are enough nodes running to form a quorum and that every node can communicate with every other node over the network. Elasticsearch will report additional details about network connectivity if the election problems persist for more than a few minutes. If you can’t start enough nodes to form a quorum, start a new cluster and restore data from a recent snapshot. Refer to Quorum-based decision making for more information.
If the logs indicate that Elasticsearch has discovered a possible quorum of nodes, the typical reason that the cluster can’t elect a master is that one of the other nodes can’t discover a quorum. Inspect the logs on the other master-eligible nodes and ensure that they have all discovered enough nodes to form a quorum.
Master is elected but unstable
editWhen a node wins the master election, it logs a message containing
elected-as-master
. If this happens repeatedly, the elected master node is
unstable. In this situation, focus on the logs from the master-eligible nodes
to understand why the election winner stops being the master and triggers
another election.
Node cannot discover or join stable master
editIf there is a stable elected master but a node can’t discover or join its
cluster, it will repeatedly log messages about the problem using the
ClusterFormationFailureHelper
logger. Other log messages on the affected node
and the elected master may provide additional information about the problem.
Node joins cluster and leaves again
editIf a node joins the cluster but Elasticsearch determines it to be faulty then it will be removed from the cluster again. See Troubleshooting an unstable cluster for more information.
Seed hosts providers
editBy default the cluster formation module offers two seed hosts providers to
configure the list of seed nodes: a settings-based and a file-based seed
hosts provider. It can be extended to support cloud environments and other
forms of seed hosts providers via discovery plugins.
Seed hosts providers are configured using the discovery.seed_providers
setting, which defaults to the settings-based hosts provider. This setting
accepts a list of different providers, allowing you to make use of multiple
ways to find the seed hosts for your cluster.
Each seed hosts provider yields the IP addresses or hostnames of the seed
nodes. If it returns any hostnames then these are resolved to IP addresses
using a DNS lookup. If a hostname resolves to multiple IP addresses then Elasticsearch
tries to find a seed node at all of these addresses. If the hosts provider does
not explicitly give the TCP port of the node by then, it will implicitly use the
first port in the port range given by transport.profiles.default.port
, or by
transport.port
if transport.profiles.default.port
is not set. The number of
concurrent lookups is controlled by
discovery.seed_resolver.max_concurrent_resolvers
which defaults to 10
, and
the timeout for each lookup is controlled by discovery.seed_resolver.timeout
which defaults to 5s
. Note that DNS lookups are subject to
JVM DNS caching.
Settings-based seed hosts provider
editThe settings-based seed hosts provider uses a node setting to configure a static list of the addresses of the seed nodes. These addresses can be given as hostnames or IP addresses; hosts specified as hostnames are resolved to IP addresses during each round of discovery.
The list of hosts is set using the discovery.seed_hosts
static setting. For example:
The port will default to |
|
If a hostname resolves to multiple IP addresses, Elasticsearch will attempt to connect to every resolved address. |
File-based seed hosts provider
editThe file-based seed hosts provider configures a list of hosts via an external file. Elasticsearch reloads this file when it changes, so that the list of seed nodes can change dynamically without needing to restart each node. For example, this gives a convenient mechanism for an Elasticsearch instance that is run in a Docker container to be dynamically supplied with a list of IP addresses to connect to when those IP addresses may not be known at node startup.
To enable file-based discovery, configure the file
hosts provider as follows
in the elasticsearch.yml
file:
discovery.seed_providers: file
Then create a file at $ES_PATH_CONF/unicast_hosts.txt
in the format described
below. Any time a change is made to the unicast_hosts.txt
file the new
changes will be picked up by Elasticsearch and the new hosts list will be used.
Note that the file-based discovery plugin augments the unicast hosts list in
elasticsearch.yml
: if there are valid seed addresses in
discovery.seed_hosts
then Elasticsearch uses those addresses in addition to those
supplied in unicast_hosts.txt
.
The unicast_hosts.txt
file contains one node entry per line. Each node entry
consists of the host (host name or IP address) and an optional transport port
number. If the port number is specified, is must come immediately after the
host (on the same line) separated by a :
. If the port number is not
specified, Elasticsearch will implicitly use the first port in the port range given by
transport.profiles.default.port
, or by transport.port
if
transport.profiles.default.port
is not set.
For example, this is an example of unicast_hosts.txt
for a cluster with four
nodes that participate in discovery, some of which are not running on the
default port:
10.10.10.5 10.10.10.6:9305 10.10.10.5:10005 # an IPv6 address [2001:0db8:85a3:0000:0000:8a2e:0370:7334]:9301
Host names are allowed instead of IP addresses and are resolved by DNS as described above. IPv6 addresses must be given in brackets with the port, if needed, coming after the brackets.
You can also add comments to this file. All comments must appear on their lines
starting with #
(i.e. comments cannot start in the middle of a line).
EC2 hosts provider
editThe EC2 discovery plugin adds a hosts provider that uses the AWS API to find a list of seed nodes.
Azure Classic hosts provider
editThe Azure Classic discovery plugin adds a hosts provider that uses the Azure Classic API find a list of seed nodes.
Google Compute Engine hosts provider
editThe GCE discovery plugin adds a hosts provider that uses the GCE API find a list of seed nodes.
On this page
- Troubleshooting discovery
- No master is elected
- Master is elected but unstable
- Node cannot discover or join stable master
- Node joins cluster and leaves again
- Seed hosts providers
- Settings-based seed hosts provider
- File-based seed hosts provider
- EC2 hosts provider
- Azure Classic hosts provider
- Google Compute Engine hosts provider