Multi-match query
editMulti-match query
editThe multi_match
query builds on the match
query
to allow multi-field queries:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'this is a test', 'fields' => [ 'subject', 'message', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "this is a test", "fields": ["subject", "message"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'this is a test', fields: [ 'subject', 'message' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "this is a test", "fields": [ "subject", "message" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'this is a test', fields: [ 'subject', 'message' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "this is a test", "fields": [ "subject", "message" ] } } }
fields
and per-field boosting
editFields can be specified with wildcards, eg:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'Will Smith', 'fields' => [ 'title', '*_name', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "Will Smith", "fields": ["title", "*_name"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'Will Smith', fields: [ 'title', '*_name' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "Will Smith", "fields": [ "title", "*_name" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'Will Smith', fields: [ 'title', '*_name' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "Will Smith", "fields": [ "title", "*_name" ] } } }
Individual fields can be boosted with the caret (^
) notation:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'this is a test', 'fields' => [ 'subject^3', 'message', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "this is a test", "fields": ["subject^3", "message"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'this is a test', fields: [ 'subject^3', 'message' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "this is a test", "fields": [ "subject^3", "message" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'this is a test', fields: [ 'subject^3', 'message' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query" : "this is a test", "fields" : [ "subject^3", "message" ] } } }
The query multiplies the |
If no fields
are provided, the multi_match
query defaults to the index.query.default_field
index settings, which in turn defaults to *
. *
extracts all fields in the mapping that
are eligible to term queries and filters the metadata fields. All extracted fields are then
combined to build a query.
Field number limit
By default, there is a limit to the number of clauses a query can contain. This
limit is defined by the
indices.query.bool.max_clause_count
setting, which defaults to 4096
. For multi-match queries, the number of
clauses is calculated as the number of fields multiplied by the number of terms.
Types of multi_match
query:
editThe way the multi_match
query is executed internally depends on the type
parameter, which can be set to:
|
(default) Finds documents which match any field, but
uses the |
|
Finds documents which match any field and combines
the |
|
Treats fields with the same |
|
Runs a |
|
Runs a |
|
Creates a |
best_fields
editThe best_fields
type is most useful when you are searching for multiple
words best found in the same field. For instance “brown fox” in a single
field is more meaningful than “brown” in one field and “fox” in the other.
The best_fields
type generates a match
query for
each field and wraps them in a dis_max
query, to
find the single best matching field. For instance, this query:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'brown fox', 'type' => 'best_fields', 'fields' => [ 'subject', 'message', ], 'tie_breaker' => 0.3, ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "brown fox", "type": "best_fields", "fields": ["subject", "message"], "tie_breaker": 0.3, } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'brown fox', type: 'best_fields', fields: [ 'subject', 'message' ], tie_breaker: 0.3 } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "brown fox", "type": "best_fields", "fields": [ "subject", "message" ], "tie_breaker": 0.3 } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'brown fox', type: 'best_fields', fields: [ 'subject', 'message' ], tie_breaker: 0.3 } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "brown fox", "type": "best_fields", "fields": [ "subject", "message" ], "tie_breaker": 0.3 } } }
would be executed as:
$params = [ 'body' => [ 'query' => [ 'dis_max' => [ 'queries' => [ [ 'match' => [ 'subject' => 'brown fox', ], ], [ 'match' => [ 'message' => 'brown fox', ], ], ], 'tie_breaker' => 0.3, ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "dis_max": { "queries": [ {"match": {"subject": "brown fox"}}, {"match": {"message": "brown fox"}}, ], "tie_breaker": 0.3, } } }, ) print(resp)
response = client.search( body: { query: { dis_max: { queries: [ { match: { subject: 'brown fox' } }, { match: { message: 'brown fox' } } ], tie_breaker: 0.3 } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "dis_max": { "queries": [ { "match": { "subject": "brown fox" } }, { "match": { "message": "brown fox" } } ], "tie_breaker": 0.3 } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { dis_max: { queries: [ { match: { subject: 'brown fox' } }, { match: { message: 'brown fox' } } ], tie_breaker: 0.3 } } } }) console.log(response)
GET /_search { "query": { "dis_max": { "queries": [ { "match": { "subject": "brown fox" }}, { "match": { "message": "brown fox" }} ], "tie_breaker": 0.3 } } }
Normally the best_fields
type uses the score of the single best matching
field, but if tie_breaker
is specified, then it calculates the score as
follows:
- the score from the best matching field
-
plus
tie_breaker * _score
for all other matching fields
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
fuzziness
, lenient
, prefix_length
, max_expansions
, fuzzy_rewrite
, zero_terms_query
,
auto_generate_synonyms_phrase_query
and fuzzy_transpositions
,
as explained in match query.
operator
and minimum_should_match
The best_fields
and most_fields
types are field-centric — they generate
a match
query per field. This means that the operator
and
minimum_should_match
parameters are applied to each field individually,
which is probably not what you want.
Take this query for example:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'Will Smith', 'type' => 'best_fields', 'fields' => [ 'first_name', 'last_name', ], 'operator' => 'and', ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "Will Smith", "type": "best_fields", "fields": ["first_name", "last_name"], "operator": "and", } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'Will Smith', type: 'best_fields', fields: [ 'first_name', 'last_name' ], operator: 'and' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "Will Smith", "type": "best_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'Will Smith', type: 'best_fields', fields: [ 'first_name', 'last_name' ], operator: 'and' } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "Will Smith", "type": "best_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } } }
This query is executed as:
(+first_name:will +first_name:smith) | (+last_name:will +last_name:smith)
In other words, all terms must be present in a single field for a document to match.
The combined_fields
query offers a
term-centric approach that handles operator
and minimum_should_match
on a
per-term basis. The other multi-match mode cross_fields
also
addresses this issue.
most_fields
editThe most_fields
type is most useful when querying multiple fields that
contain the same text analyzed in different ways. For instance, the main
field may contain synonyms, stemming and terms without diacritics. A second
field may contain the original terms, and a third field might contain
shingles. By combining scores from all three fields we can match as many
documents as possible with the main field, but use the second and third fields
to push the most similar results to the top of the list.
This query:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'quick brown fox', 'type' => 'most_fields', 'fields' => [ 'title', 'title.original', 'title.shingles', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "quick brown fox", "type": "most_fields", "fields": ["title", "title.original", "title.shingles"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'quick brown fox', type: 'most_fields', fields: [ 'title', 'title.original', 'title.shingles' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "quick brown fox", "type": "most_fields", "fields": [ "title", "title.original", "title.shingles" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'quick brown fox', type: 'most_fields', fields: [ 'title', 'title.original', 'title.shingles' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "quick brown fox", "type": "most_fields", "fields": [ "title", "title.original", "title.shingles" ] } } }
would be executed as:
$params = [ 'body' => [ 'query' => [ 'bool' => [ 'should' => [ [ 'match' => [ 'title' => 'quick brown fox', ], ], [ 'match' => [ 'title.original' => 'quick brown fox', ], ], [ 'match' => [ 'title.shingles' => 'quick brown fox', ], ], ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "bool": { "should": [ {"match": {"title": "quick brown fox"}}, {"match": {"title.original": "quick brown fox"}}, {"match": {"title.shingles": "quick brown fox"}}, ] } } }, ) print(resp)
response = client.search( body: { query: { bool: { should: [ { match: { title: 'quick brown fox' } }, { match: { "title.original": 'quick brown fox' } }, { match: { "title.shingles": 'quick brown fox' } } ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "bool": { "should": [ { "match": { "title": "quick brown fox" } }, { "match": { "title.original": "quick brown fox" } }, { "match": { "title.shingles": "quick brown fox" } } ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { bool: { should: [ { match: { title: 'quick brown fox' } }, { match: { 'title.original': 'quick brown fox' } }, { match: { 'title.shingles': 'quick brown fox' } } ] } } } }) console.log(response)
GET /_search { "query": { "bool": { "should": [ { "match": { "title": "quick brown fox" }}, { "match": { "title.original": "quick brown fox" }}, { "match": { "title.shingles": "quick brown fox" }} ] } } }
The score from each match
clause is added together, then divided by the
number of match
clauses.
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
fuzziness
, lenient
, prefix_length
, max_expansions
, fuzzy_rewrite
, and zero_terms_query
.
phrase
and phrase_prefix
editThe phrase
and phrase_prefix
types behave just like best_fields
,
but they use a match_phrase
or match_phrase_prefix
query instead of a
match
query.
This query:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'quick brown f', 'type' => 'phrase_prefix', 'fields' => [ 'subject', 'message', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "quick brown f", "type": "phrase_prefix", "fields": ["subject", "message"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'quick brown f', type: 'phrase_prefix', fields: [ 'subject', 'message' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "quick brown f", "type": "phrase_prefix", "fields": [ "subject", "message" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'quick brown f', type: 'phrase_prefix', fields: [ 'subject', 'message' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "quick brown f", "type": "phrase_prefix", "fields": [ "subject", "message" ] } } }
would be executed as:
$params = [ 'body' => [ 'query' => [ 'dis_max' => [ 'queries' => [ [ 'match_phrase_prefix' => [ 'subject' => 'quick brown f', ], ], [ 'match_phrase_prefix' => [ 'message' => 'quick brown f', ], ], ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "dis_max": { "queries": [ {"match_phrase_prefix": {"subject": "quick brown f"}}, {"match_phrase_prefix": {"message": "quick brown f"}}, ] } } }, ) print(resp)
response = client.search( body: { query: { dis_max: { queries: [ { match_phrase_prefix: { subject: 'quick brown f' } }, { match_phrase_prefix: { message: 'quick brown f' } } ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "dis_max": { "queries": [ { "match_phrase_prefix": { "subject": "quick brown f" } }, { "match_phrase_prefix": { "message": "quick brown f" } } ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { dis_max: { queries: [ { match_phrase_prefix: { subject: 'quick brown f' } }, { match_phrase_prefix: { message: 'quick brown f' } } ] } } } }) console.log(response)
GET /_search { "query": { "dis_max": { "queries": [ { "match_phrase_prefix": { "subject": "quick brown f" }}, { "match_phrase_prefix": { "message": "quick brown f" }} ] } } }
Also, accepts analyzer
, boost
, lenient
and zero_terms_query
as explained
in Match, as well as slop
which is explained in Match phrase.
Type phrase_prefix
additionally accepts max_expansions
.
cross_fields
editThe cross_fields
type is particularly useful with structured documents where
multiple fields should match. For instance, when querying the first_name
and last_name
fields for “Will Smith”, the best match is likely to have
“Will” in one field and “Smith” in the other.
One way of dealing with these types of queries is simply to index the
first_name
and last_name
fields into a single full_name
field. Of
course, this can only be done at index time.
The cross_field
type tries to solve these problems at query time by taking a
term-centric approach. It first analyzes the query string into individual
terms, then looks for each term in any of the fields, as though they were one
big field.
A query like:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'Will Smith', 'type' => 'cross_fields', 'fields' => [ 'first_name', 'last_name', ], 'operator' => 'and', ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "Will Smith", "type": "cross_fields", "fields": ["first_name", "last_name"], "operator": "and", } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'Will Smith', type: 'cross_fields', fields: [ 'first_name', 'last_name' ], operator: 'and' } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "Will Smith", "type": "cross_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'Will Smith', type: 'cross_fields', fields: [ 'first_name', 'last_name' ], operator: 'and' } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } } }
is executed as:
+(first_name:will last_name:will) +(first_name:smith last_name:smith)
In other words, all terms must be present in at least one field for a
document to match. (Compare this to
the logic used for best_fields
and most_fields
.)
That solves one of the two problems. The problem of differing term frequencies is solved by blending the term frequencies for all fields in order to even out the differences.
In practice, first_name:smith
will be treated as though it has the same
frequencies as last_name:smith
, plus one. This will make matches on
first_name
and last_name
have comparable scores, with a tiny advantage
for last_name
since it is the most likely field that contains smith
.
Note that cross_fields
is usually only useful on short string fields
that all have a boost
of 1
. Otherwise boosts, term freqs and length
normalization contribute to the score in such a way that the blending of term
statistics is not meaningful anymore.
If you run the above query through the Validate, it returns this explanation:
+blended("will", fields: [first_name, last_name]) +blended("smith", fields: [first_name, last_name])
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
lenient
and zero_terms_query
.
The cross_fields
type blends field statistics in a complex way that
can be hard to interpret. The score combination can even be incorrect, in
particular when some documents contain some of the search fields, but not all
of them. You should consider the
combined_fields
query as an alternative,
which is also term-centric but combines field statistics in a more robust way.
cross_field
and analysis
editThe cross_field
type can only work in term-centric mode on fields that have
the same analyzer. Fields with the same analyzer are grouped together as in
the example above. If there are multiple groups, the query will use the best
score from any group.
For instance, if we have a first
and last
field which have
the same analyzer, plus a first.edge
and last.edge
which
both use an edge_ngram
analyzer, this query:
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'Jon', 'type' => 'cross_fields', 'fields' => [ 'first', 'first.edge', 'last', 'last.edge', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "Jon", "type": "cross_fields", "fields": ["first", "first.edge", "last", "last.edge"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'Jon', type: 'cross_fields', fields: [ 'first', 'first.edge', 'last', 'last.edge' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "Jon", "type": "cross_fields", "fields": [ "first", "first.edge", "last", "last.edge" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'Jon', type: 'cross_fields', fields: [ 'first', 'first.edge', 'last', 'last.edge' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "Jon", "type": "cross_fields", "fields": [ "first", "first.edge", "last", "last.edge" ] } } }
would be executed as:
blended("jon", fields: [first, last]) | ( blended("j", fields: [first.edge, last.edge]) blended("jo", fields: [first.edge, last.edge]) blended("jon", fields: [first.edge, last.edge]) )
In other words, first
and last
would be grouped together and
treated as a single field, and first.edge
and last.edge
would be
grouped together and treated as a single field.
Having multiple groups is fine, but when combined with operator
or
minimum_should_match
, it can suffer from the same problem
as most_fields
or best_fields
.
You can easily rewrite this query yourself as two separate cross_fields
queries combined with a dis_max
query, and apply the minimum_should_match
parameter to just one of them:
GET /_search { "query": { "dis_max": { "queries": [ { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "first", "last" ], "minimum_should_match": "50%" } }, { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "*.edge" ] } } ] } } }
You can force all fields into the same group by specifying the analyzer
parameter in the query.
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'Jon', 'type' => 'cross_fields', 'analyzer' => 'standard', 'fields' => [ 'first', 'last', '*.edge', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "Jon", "type": "cross_fields", "analyzer": "standard", "fields": ["first", "last", "*.edge"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'Jon', type: 'cross_fields', analyzer: 'standard', fields: [ 'first', 'last', '*.edge' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "Jon", "type": "cross_fields", "analyzer": "standard", "fields": [ "first", "last", "*.edge" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'Jon', type: 'cross_fields', analyzer: 'standard', fields: [ 'first', 'last', '*.edge' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "Jon", "type": "cross_fields", "analyzer": "standard", "fields": [ "first", "last", "*.edge" ] } } }
which will be executed as:
blended("will", fields: [first, first.edge, last.edge, last]) blended("smith", fields: [first, first.edge, last.edge, last])
tie_breaker
editBy default, each per-term blended
query will use the best score returned by
any field in a group. Then when combining scores across groups, the query uses
the best score from any group. The tie_breaker
parameter can change the
behavior for both of these steps:
|
Take the single best score out of (eg) |
|
Add together the scores for (eg) |
|
Take the single best score plus |
bool_prefix
editThe bool_prefix
type’s scoring behaves like most_fields
, but using a
match_bool_prefix
query instead of a
match
query.
$params = [ 'body' => [ 'query' => [ 'multi_match' => [ 'query' => 'quick brown f', 'type' => 'bool_prefix', 'fields' => [ 'subject', 'message', ], ], ], ], ]; $response = $client->search($params);
resp = client.search( body={ "query": { "multi_match": { "query": "quick brown f", "type": "bool_prefix", "fields": ["subject", "message"], } } }, ) print(resp)
response = client.search( body: { query: { multi_match: { query: 'quick brown f', type: 'bool_prefix', fields: [ 'subject', 'message' ] } } } ) puts response
res, err := es.Search( es.Search.WithBody(strings.NewReader(`{ "query": { "multi_match": { "query": "quick brown f", "type": "bool_prefix", "fields": [ "subject", "message" ] } } }`)), es.Search.WithPretty(), ) fmt.Println(res, err)
const response = await client.search({ body: { query: { multi_match: { query: 'quick brown f', type: 'bool_prefix', fields: [ 'subject', 'message' ] } } } }) console.log(response)
GET /_search { "query": { "multi_match" : { "query": "quick brown f", "type": "bool_prefix", "fields": [ "subject", "message" ] } } }
The analyzer
, boost
, operator
, minimum_should_match
, lenient
,
zero_terms_query
, and auto_generate_synonyms_phrase_query
parameters as
explained in match query are supported. The
fuzziness
, prefix_length
, max_expansions
, fuzzy_rewrite
, and
fuzzy_transpositions
parameters are supported for the terms that are used to
construct term queries, but do not have an effect on the prefix query
constructed from the final term.
The slop
parameter is not supported by this query type.