- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.9
- Set up Elasticsearch
- Installing Elasticsearch
- Run Elasticsearch locally
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Collapse search results
- Filter search results
- Highlighting
- Long-running searches
- Near real-time search
- Paginate search results
- Retrieve inner hits
- Retrieve selected fields
- Search across clusters
- Search multiple data streams and indices
- Search shard routing
- Search templates
- Sort search results
- kNN search
- Semantic search
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Multiple deployments writing to the same snapshot repository
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Delete/reset desired balance
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Update API key
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Tune approximate kNN search
editTune approximate kNN search
editElasticsearch supports approximate k-nearest neighbor search for efficiently finding the k nearest vectors to a query vector. Since approximate kNN search works differently from other queries, there are special considerations around its performance.
Many of these recommendations help improve search speed. With approximate kNN, the indexing algorithm runs searches under the hood to create the vector index structures. So these same recommendations also help with indexing speed.
Prefer dot_product
over cosine
editWhen indexing vectors for approximate kNN search, you need to specify the
similarity
function for comparing the vectors.
If you’d like to compare vectors through cosine similarity, there are two
options.
The cosine
option accepts any float vector and computes the cosine
similarity. While this is convenient for testing, it’s not the most efficient
approach. Instead, we recommend using the dot_product
option to compute the
similarity. To use dot_product
, all vectors need to be normalized in advance
to have length 1. The dot_product
option is significantly faster, since it
avoids performing extra vector length computations during the search.
Ensure data nodes have enough memory
editElasticsearch uses the HNSW algorithm for approximate
kNN search. HNSW is a graph-based algorithm which only works efficiently when
most vector data is held in memory. You should ensure that data nodes have at
least enough RAM to hold the vector data and index structures. To check the
size of the vector data, you can use the Analyze index disk usage API. As a
loose rule of thumb, and assuming the default HNSW options, the bytes used will
be num_vectors * 4 * (num_dimensions + 12)
. When using the byte
element_type
the space required will be closer to num_vectors * (num_dimensions + 12)
. Note that
the required RAM is for the filesystem cache, which is separate from the Java
heap.
The data nodes should also leave a buffer for other ways that RAM is needed. For example your index might also include text fields and numerics, which also benefit from using filesystem cache. It’s recommended to run benchmarks with your specific dataset to ensure there’s a sufficient amount of memory to give good search performance. You can find here and here some examples of datasets and configurations that we use for our nightly benchmarks.
Warm up the filesystem cache
editIf the machine running Elasticsearch is restarted, the filesystem cache will be
empty, so it will take some time before the operating system loads hot regions
of the index into memory so that search operations are fast. You can explicitly
tell the operating system which files should be loaded into memory eagerly
depending on the file extension using the
index.store.preload
setting.
Loading data into the filesystem cache eagerly on too many indices or too many files will make search slower if the filesystem cache is not large enough to hold all the data. Use with caution.
The following file extensions are used for the approximate kNN search: "vec" (for vector values), "vex" (for HNSW graph), "vem" (for metadata).
Reduce vector dimensionality
editThe speed of kNN search scales linearly with the number of vector dimensions, because each similarity computation considers each element in the two vectors. Whenever possible, it’s better to use vectors with a lower dimension. Some embedding models come in different "sizes", with both lower and higher dimensional options available. You could also experiment with dimensionality reduction techniques like PCA. When experimenting with different approaches, it’s important to measure the impact on relevance to ensure the search quality is still acceptable.
Exclude vector fields from _source
editElasticsearch stores the original JSON document that was passed at index time in the
_source
field. By default, each hit in the search
results contains the full document _source
. When the documents contain
high-dimensional dense_vector
fields, the _source
can be quite large and
expensive to load. This could significantly slow down the speed of kNN search.
You can disable storing dense_vector
fields in the _source
through the
excludes
mapping parameter. This prevents loading and
returning large vectors during search, and also cuts down on the index size.
Vectors that have been omitted from _source
can still be used in kNN search,
since it relies on separate data structures to perform the search. Before
using the excludes
parameter, make sure to review the
downsides of omitting fields from _source
.
Reduce the number of index segments
editElasticsearch shards are composed of segments, which are internal storage elements in the index. For approximate kNN search, Elasticsearch stores the dense vector values of each segment as an HNSW graph. kNN search must check each segment, searching through one HNSW graph after another. This means kNN search can be significantly faster if there are fewer segments. By default, Elasticsearch periodically merges smaller segments into larger ones through a background merge process. If this isn’t sufficient, you can take explicit steps to reduce the number of index segments.
Force merge to one segment
editThe force merge operation forces an index merge. If you
force merge to one segment, the kNN search only need to check a single,
all-inclusive HNSW graph. Force merging dense_vector
fields is an expensive
operation that can take significant time to complete.
We recommend only force merging a read-only index (meaning the index is no longer receiving writes). When documents are updated or deleted, the old version is not immediately removed, but instead soft-deleted and marked with a "tombstone". These soft-deleted documents are automatically cleaned up during regular segment merges. But force merge can cause very large (> 5GB) segments to be produced, which are not eligible for regular merges. So the number of soft-deleted documents can then grow rapidly, resulting in higher disk usage and worse search performance. If you regularly force merge an index receiving writes, this can also make snapshots more expensive, since the new documents can’t be backed up incrementally.
Create large segments during bulk indexing
editA common pattern is to first perform an initial bulk upload, then make an index available for searches. Instead of force merging, you can adjust the index settings to encourage Elasticsearch to create larger initial segments:
-
Ensure there are no searches during the bulk upload and disable
index.refresh_interval
by setting it to-1
. This prevents refresh operations and avoids creating extra segments. -
Give Elasticsearch a large indexing buffer so it can accept more documents before
flushing. By default, the
indices.memory.index_buffer_size
is set to 10% of the heap size. With a substantial heap size like 32GB, this is often enough. To allow the full indexing buffer to be used, you should also increase the limitindex.translog.flush_threshold_size
.
Avoid heavy indexing during searches
editActively indexing documents can have a negative impact on approximate kNN search performance, since indexing threads steal compute resources from search. When indexing and searching at the same time, Elasticsearch also refreshes frequently, which creates several small segments. This also hurts search performance, since approximate kNN search is slower when there are more segments.
When possible, it’s best to avoid heavy indexing during approximate kNN search. If you need to reindex all the data, perhaps because the vector embedding model changed, then it’s better to reindex the new documents into a separate index rather than update them in-place. This helps avoid the slowdown mentioned above, and prevents expensive merge operations due to frequent document updates.
Avoid page cache thrashing by using modest readahead values on Linux
editSearch can cause a lot of randomized read I/O. When the underlying block device has a high readahead value, there may be a lot of unnecessary read I/O done, especially when files are accessed using memory mapping (see storage types).
Most Linux distributions use a sensible readahead value of 128KiB
for a
single plain device, however, when using software raid, LVM or dm-crypt the
resulting block device (backing Elasticsearch path.data)
may end up having a very large readahead value (in the range of several MiB).
This usually results in severe page (filesystem) cache thrashing adversely
affecting search (or update) performance.
You can check the current value in KiB
using
lsblk -o NAME,RA,MOUNTPOINT,TYPE,SIZE
.
Consult the documentation of your distribution on how to alter this value
(for example with a udev
rule to persist across reboots, or via
blockdev --setra
as a transient setting). We recommend a value of 128KiB
for readahead.
blockdev
expects values in 512 byte sectors whereas lsblk
reports
values in KiB
. As an example, to temporarily set readahead to 128KiB
for /dev/nvme0n1
, specify blockdev --setra 256 /dev/nvme0n1
.
On this page
- Prefer
dot_product
overcosine
- Ensure data nodes have enough memory
- Warm up the filesystem cache
- Reduce vector dimensionality
- Exclude vector fields from
_source
- Reduce the number of index segments
- Force merge to one segment
- Create large segments during bulk indexing
- Avoid heavy indexing during searches
- Avoid page cache thrashing by using modest readahead values on Linux