WARNING: Version 5.x has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Sniffing role detection
editSniffing role detection
editWhen we sniff the cluster state, we detect the role of each node, for example, whether it’s master eligible, a node that holds data, etc. We can then use this information when selecting a node to perform an API call on.
var audit = new Auditor(() => Framework.Cluster .Nodes(10) .Sniff(s => s.Fails(Always)) .Sniff(s => s.OnPort(9202) .Succeeds(Always, Framework.Cluster.Nodes(8).MasterEligible(9200, 9201, 9202)) ) .SniffingConnectionPool() .AllDefaults() ) { AssertPoolBeforeStartup = (pool) => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(10); pool.Nodes.Where(n => n.MasterEligible).Should().HaveCount(10); }, AssertPoolAfterStartup = (pool) => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(8); pool.Nodes.Where(n => n.MasterEligible).Should().HaveCount(3); } }; await audit.TraceStartup(); var audit = new Auditor(() => Framework.Cluster .Nodes(10) .Sniff(s => s.Fails(Always)) .Sniff(s => s.OnPort(9202) .Succeeds(Always, Framework.Cluster.Nodes(8).StoresNoData(9200, 9201, 9202)) ) .SniffingConnectionPool() .AllDefaults() ) { AssertPoolBeforeStartup = (pool) => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(10); pool.Nodes.Where(n => n.HoldsData).Should().HaveCount(10); }, AssertPoolAfterStartup = (pool) => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(8); pool.Nodes.Where(n => n.HoldsData).Should().HaveCount(5); } }; await audit.TraceStartup(); var audit = new Auditor(() => Framework.Cluster .Nodes(10) .Sniff(s => s.SucceedAlways() .Succeeds(Always, Framework.Cluster.Nodes(8).StoresNoData(9200, 9201, 9202).HttpDisabled(9201)) ) .SniffingConnectionPool() .AllDefaults() ) { AssertPoolBeforeStartup = (pool) => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(10); pool.Nodes.Where(n => n.HoldsData).Should().HaveCount(10); pool.Nodes.Where(n => n.HttpEnabled).Should().HaveCount(10); pool.Nodes.Should().OnlyContain(n => n.Uri.Host == "localhost"); }, AssertPoolAfterStartup = (pool) => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(7, "we filtered the node that has no http enabled"); pool.Nodes.Should().NotContain(n=>n.Uri.Port == 9201); pool.Nodes.Where(n => n.HoldsData).Should().HaveCount(5); } }; await audit.TraceStartup();
In this example, We create a Virtual cluster with a Sniffing connection pool that seeds all the known master nodes. When the client sniffs on startup, we see that the cluster is 20 nodes in total, with the master eligible nodes storing no data.
var masterNodes = new[] {9200, 9201, 9202}; var totalNodesInTheCluster = 20; // var audit = new Auditor(() => Framework.Cluster .MasterOnlyNodes(masterNodes.Length) .Sniff(s => s.SucceedAlways() .Succeeds(Always, Framework.Cluster .Nodes(totalNodesInTheCluster) .StoresNoData(masterNodes) .MasterEligible(masterNodes)) ) .SniffingConnectionPool() .Settings(s=>s.DisablePing()) ) { AssertPoolBeforeStartup = pool => { pool.Should().NotBeNull(); pool.Nodes.Should().HaveCount(3, "we seeded 3 master only nodes at the start of the application"); pool.Nodes.Where(n => n.HoldsData).Should().HaveCount(0, "none of which hold data"); }, AssertPoolAfterStartup = (pool) => { pool.Should().NotBeNull(); var nodes = pool.CreateView().ToList(); nodes.Count().Should().Be(20, "Master nodes are included in the registration of nodes since we still favor sniffing on them"); } };
Before the sniff, assert we only see three master only nodes |
|
After the sniff, assert we now know about the existence of 20 nodes. |
After the sniff has happened on 9200 before the first API call, assert that the subsequent API call hits the first non master eligible node
audit = await audit.TraceStartup(new ClientCall { { SniffSuccess, 9200}, { HealthyResponse, 9203} });
To verify that the client behaves as we expect when making requests to the virtual cluster, make 1000 different client calls and assert that each is not sent to any of the known master only nodes
var seenNodes = new HashSet<int>(); foreach (var _ in Enumerable.Range(0, 1000)) { audit = await audit.TraceCalls( new ClientCall {{HealthyResponse, (a) => { var port = a.Node.Uri.Port; masterNodes.Should().NotContain(port); seenNodes.Add(port); }}} ); } seenNodes.Should().HaveCount(totalNodesInTheCluster - masterNodes.Length);
|
Node predicates
editA predicate can be specified on ConnectionSettings
that can be used to determine which nodes in the cluster API calls
can be executed on.
As an example, Let’s create a Virtual cluster with a Sniffing connection pool that seeds all 20 nodes to begin. When the client sniffs on startup, we see the cluster is still 20 nodes in total, however we are now aware of the actual configured settings for the nodes from the cluster response.
var totalNodesInTheCluster = 20; var setting = "node.attr.rack_id"; var value = "rack_one"; var nodesInRackOne = new[] {9204, 9210, 9213}; var audit = new Auditor(() => Framework.Cluster .Nodes(totalNodesInTheCluster) // .Sniff(s => s.SucceedAlways() .Succeeds(Always, Framework.Cluster .Nodes(totalNodesInTheCluster) .HasSetting(setting, value, nodesInRackOne)) ) .SniffingConnectionPool() .Settings(s=>s .DisablePing() .NodePredicate(node => node.Settings.ContainsKey(setting) && node.Settings[setting] == value ) ) ) { AssertPoolAfterStartup = pool => { pool.Should().NotBeNull(); var nodes = pool.CreateView().ToList(); nodes.Count(n => n.Settings.ContainsKey(setting)).Should().Be(3, "only three nodes are in rack_one"); } };
for testing simplicity, disable pings |
|
We only want to execute API calls to nodes in rack_one |
|
After sniffing on startup, assert that the pool of nodes that the client will execute API calls against only contains the three nodes that are in |
With the cluster set up, assert that the sniff happens on 9200 before the first API call
and that API call hits the first node in rack_one
audit = await audit.TraceStartup(new ClientCall { { SniffSuccess, 9200}, { HealthyResponse, 9204} });
To prove that the client is working as expected, do a 1000 different client calls and
assert that each is sent to a node in rack_one
only,
respecting the node predicate on connection settings
var seenNodes = new HashSet<int>(); foreach (var _ in Enumerable.Range(0, 1000)) { audit = await audit.TraceCalls( new ClientCall {{HealthyResponse, (a) => { var port = a.Node.Uri.Port; nodesInRackOne.Should().Contain(port); seenNodes.Add(port); }}} ); } seenNodes.Should().HaveCount(nodesInRackOne.Length);
As another example of node predicates, let’s set up a Virtual cluster with a bad node predicate, i.e. predicate that filters out all nodes from being the targets of API calls from the client
var totalNodesInTheCluster = 20; var audit = new Auditor(() => Framework.Cluster .Nodes(totalNodesInTheCluster) .Sniff(s => s.SucceedAlways() .Succeeds(Always, Framework.Cluster.Nodes(totalNodesInTheCluster)) ) .SniffingConnectionPool() .Settings(s => s .DisablePing() .NodePredicate(node => false) ) );
Now when making the client calls, the audit trail indicates that a sniff on startup succeeds, but the subsequent API call fails because the node predicate filters out all nodes as targets on which to execute API calls