- .NET Clients: other versions:
- Introduction
- Installation
- Breaking changes
- API Conventions
- Elasticsearch.Net - Low level client
- NEST - High level client
- Troubleshooting
- Search
- Query DSL
- Full text queries
- Term level queries
- Exists Query Usage
- Fuzzy Date Query Usage
- Fuzzy Numeric Query Usage
- Fuzzy Query Usage
- Ids Query Usage
- Prefix Query Usage
- Date Range Query Usage
- Long Range Query Usage
- Numeric Range Query Usage
- Term Range Query Usage
- Regexp Query Usage
- Term Query Usage
- Terms Set Query Usage
- Terms List Query Usage
- Terms Lookup Query Usage
- Terms Query Usage
- Wildcard Query Usage
- Compound queries
- Joining queries
- Geo queries
- Specialized queries
- Span queries
- NEST specific queries
- Aggregations
- Metric Aggregations
- Average Aggregation Usage
- Boxplot Aggregation Usage
- Cardinality Aggregation Usage
- Extended Stats Aggregation Usage
- Geo Bounds Aggregation Usage
- Geo Centroid Aggregation Usage
- Geo Line Aggregation Usage
- Max Aggregation Usage
- Median Absolute Deviation Aggregation Usage
- Min Aggregation Usage
- Percentile Ranks Aggregation Usage
- Percentiles Aggregation Usage
- Rate Aggregation Usage
- Scripted Metric Aggregation Usage
- Stats Aggregation Usage
- String Stats Aggregation Usage
- Sum Aggregation Usage
- T Test Aggregation Usage
- Top Hits Aggregation Usage
- Top Metrics Aggregation Usage
- Value Count Aggregation Usage
- Weighted Average Aggregation Usage
- Bucket Aggregations
- Adjacency Matrix Usage
- Auto Date Histogram Aggregation Usage
- Children Aggregation Usage
- Composite Aggregation Usage
- Date Histogram Aggregation Usage
- Date Range Aggregation Usage
- Diversified Sampler Aggregation Usage
- Filter Aggregation Usage
- Filters Aggregation Usage
- Geo Distance Aggregation Usage
- Geo Hash Grid Aggregation Usage
- Geo Tile Grid Aggregation Usage
- Global Aggregation Usage
- Histogram Aggregation Usage
- Ip Range Aggregation Usage
- Missing Aggregation Usage
- Multi Terms Aggregation Usage
- Nested Aggregation Usage
- Parent Aggregation Usage
- Range Aggregation Usage
- Rare Terms Aggregation Usage
- Reverse Nested Aggregation Usage
- Sampler Aggregation Usage
- Significant Terms Aggregation Usage
- Significant Text Aggregation Usage
- Terms Aggregation Usage
- Variable Width Histogram Usage
- Pipeline Aggregations
- Average Bucket Aggregation Usage
- Bucket Script Aggregation Usage
- Bucket Selector Aggregation Usage
- Bucket Sort Aggregation Usage
- Cumulative Cardinality Aggregation Usage
- Cumulative Sum Aggregation Usage
- Derivative Aggregation Usage
- Extended Stats Bucket Aggregation Usage
- Max Bucket Aggregation Usage
- Min Bucket Aggregation Usage
- Moving Average Ewma Aggregation Usage
- Moving Average Holt Linear Aggregation Usage
- Moving Average Holt Winters Aggregation Usage
- Moving Average Linear Aggregation Usage
- Moving Average Simple Aggregation Usage
- Moving Function Aggregation Usage
- Moving Percentiles Aggregation Usage
- Normalize Aggregation Usage
- Percentiles Bucket Aggregation Usage
- Serial Differencing Aggregation Usage
- Stats Bucket Aggregation Usage
- Sum Bucket Aggregation Usage
- Matrix Aggregations
- Metric Aggregations
IMPORTANT: No additional bug fixes or documentation updates
will be released for this version. For the latest information, see the
current release documentation.
Function Score Query Usage
edit
IMPORTANT: This documentation is no longer updated. Refer to Elastic's version policy and the latest documentation.
Function Score Query Usage
editFluent DSL example
editq .FunctionScore(c => c .Name("named_query") .Boost(1.1) .Query(qq => qq.MatchAll()) .BoostMode(FunctionBoostMode.Multiply) .ScoreMode(FunctionScoreMode.Sum) .MaxBoost(20.0) .MinScore(1.0) .Functions(f => f .Exponential(b => b .Field(p => p.NumberOfCommits) .Decay(0.5) .Origin(1.0) .Scale(0.1) .Weight(2.1) .Filter(fi => fi .Range(r => r .Field(p => p.NumberOfContributors) .GreaterThan(10) ) ) ) .GaussDate(b => b.Field(p => p.LastActivity).Origin(DateMath.Now).Decay(0.5).Scale("1d")) .LinearGeoLocation(b => b .Field(p => p.LocationPoint) .Origin(new GeoLocation(70, -70)) .Scale(Distance.Miles(1)) .MultiValueMode(MultiValueMode.Average) ) .FieldValueFactor(b => b .Field(p => p.NumberOfContributors) .Factor(1.1) .Missing(0.1) .Modifier(FieldValueFactorModifier.Square) .Weight(3) .Filter(fi => fi .Term(t => t .Field(p => p.Branches) .Value("dev") ) ) ) .RandomScore(r => r.Seed(1337).Field("_seq_no")) .RandomScore(r => r.Seed("randomstring").Field("_seq_no")) .Weight(1.0) .ScriptScore(s => s .Script(ss => ss .Source("Math.log(2 + doc['numberOfCommits'].value)") ) .Weight(2) ) ) )
Object Initializer syntax example
editnew FunctionScoreQuery() { Name = "named_query", Boost = 1.1, Query = new MatchAllQuery(), BoostMode = FunctionBoostMode.Multiply, ScoreMode = FunctionScoreMode.Sum, MaxBoost = 20.0, MinScore = 1.0, Functions = new List<IScoreFunction> { new ExponentialDecayFunction { Origin = 1.0, Decay = 0.5, Field = Field<Project>(p => p.NumberOfCommits), Scale = 0.1, Weight = 2.1, Filter = new NumericRangeQuery { Field = Field<Project>(f => f.NumberOfContributors), GreaterThan = 10 } }, new GaussDateDecayFunction { Origin = DateMath.Now, Field = Field<Project>(p => p.LastActivity), Decay = 0.5, Scale = TimeSpan.FromDays(1) }, new LinearGeoDecayFunction { Origin = new GeoLocation(70, -70), Field = Field<Project>(p => p.LocationPoint), Scale = Distance.Miles(1), MultiValueMode = MultiValueMode.Average }, new FieldValueFactorFunction { Field = Field<Project>(p => p.NumberOfContributors), Factor = 1.1, Missing = 0.1, Modifier = FieldValueFactorModifier.Square, Weight = 3, Filter = new TermQuery { Field = Field<Project>(p => p.Branches), Value = "dev" } }, new RandomScoreFunction { Seed = 1337, Field = "_seq_no" }, new RandomScoreFunction { Seed = "randomstring", Field = "_seq_no" }, new WeightFunction { Weight = 1.0 }, new ScriptScoreFunction { Script = new InlineScript("Math.log(2 + doc['numberOfCommits'].value)"), Weight = 2.0 } } }
Example json output.
{ "function_score": { "_name": "named_query", "boost": 1.1, "boost_mode": "multiply", "functions": [ { "exp": { "numberOfCommits": { "origin": 1.0, "scale": 0.1, "decay": 0.5 } }, "weight": 2.1, "filter": { "range": { "numberOfContributors": { "gt": 10.0 } } } }, { "gauss": { "lastActivity": { "origin": "now", "scale": "1d", "decay": 0.5 } } }, { "linear": { "locationPoint": { "origin": { "lat": 70.0, "lon": -70.0 }, "scale": "1mi" }, "multi_value_mode": "avg" } }, { "filter": { "term": { "branches": { "value": "dev" } } }, "field_value_factor": { "field": "numberOfContributors", "factor": 1.1, "missing": 0.1, "modifier": "square" }, "weight": 3.0 }, { "random_score": { "seed": 1337, "field": "_seq_no" } }, { "random_score": { "seed": "randomstring", "field": "_seq_no" } }, { "weight": 1.0 }, { "script_score": { "script": { "source": "Math.log(2 + doc['numberOfCommits'].value)" } }, "weight": 2.0 } ], "max_boost": 20.0, "min_score": 1.0, "query": { "match_all": {} }, "score_mode": "sum" } }
Was this helpful?
Thank you for your feedback.