Perform inference API

edit

This functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.

Performs an inference task on an input text by using an inference endpoint.

The inference APIs enable you to use certain services, such as built-in machine learning models (ELSER, E5), models uploaded through Eland, Cohere, OpenAI, or Hugging Face. For built-in models and models uploaded through Eland, the inference APIs offer an alternative way to use and manage trained models. However, if you do not plan to use the inference APIs to use these models or if you want to use non-NLP models, use the Machine learning trained model APIs.

Request

edit

POST /_inference/<inference_id>

POST /_inference/<task_type>/<inference_id>

Prerequisites

edit

Description

edit

The perform inference API enables you to use machine learning models to perform specific tasks on data that you provide as an input. The API returns a response with the results of the tasks. The inference endpoint you use can perform one specific task that has been defined when the endpoint was created with the Create inference API.

Path parameters

edit
<inference_id>
(Required, string) The unique identifier of the inference endpoint.
<task_type>
(Optional, string) The type of inference task that the model performs.

Request body

edit
input
(Required, array of strings) The text on which you want to perform the inference task. input can be a single string or an array.

Examples

edit

The following example performs sparse embedding on the example sentence.

resp = client.inference.inference(
    task_type="sparse_embedding",
    inference_id="my-elser-model",
    body={
        "input": "The sky above the port was the color of television tuned to a dead channel."
    },
)
print(resp)
response = client.inference.inference(
  task_type: 'sparse_embedding',
  model_id: 'my-elser-model',
  body: {
    input: 'The sky above the port was the color of television tuned to a dead channel.'
  }
)
puts response
POST _inference/sparse_embedding/my-elser-model
{
  "input": "The sky above the port was the color of television tuned to a dead channel."
}

The API returns the following response:

{
  "sparse_embedding": [
    {
      "port": 2.1259406,
      "sky": 1.7073475,
      "color": 1.6922266,
      "dead": 1.6247464,
      "television": 1.3525393,
      "above": 1.2425821,
      "tuned": 1.1440028,
      "colors": 1.1218185,
      "tv": 1.0111054,
      "ports": 1.0067928,
      "poem": 1.0042328,
      "channel": 0.99471164,
      "tune": 0.96235967,
      "scene": 0.9020516,
      (...)
    },
    (...)
  ]
}