- Java REST Client (deprecated): other versions:
- Overview
- Java Low Level REST Client
- Java High Level REST Client
- Getting started
- Document APIs
- Search APIs
- Miscellaneous APIs
- Indices APIs
- Analyze API
- Create Index API
- Delete Index API
- Indices Exists API
- Open Index API
- Close Index API
- Shrink Index API
- Split Index API
- Refresh API
- Flush API
- Flush Synced API
- Clear Cache API
- Force Merge API
- Rollover Index API
- Put Mapping API
- Get Mappings API
- Get Field Mappings API
- Index Aliases API
- Exists Alias API
- Get Alias API
- Update Indices Settings API
- Get Settings API
- Put Template API
- Validate Query API
- Get Templates API
- Get Index API
- Cluster APIs
- Ingest APIs
- Snapshot APIs
- Tasks APIs
- Script APIs
- Licensing APIs
- Machine Learning APIs
- Put Job API
- Get Job API
- Delete Job API
- Open Job API
- Close Job API
- Update Job API
- Flush Job API
- Put Datafeed API
- Get Datafeed API
- Delete Datafeed API
- Preview Datafeed API
- Start Datafeed API
- Stop Datafeed API
- Get Datafeed Stats API
- Get Job Stats API
- Forecast Job API
- Delete Forecast API
- Get Buckets API
- Get Overall Buckets API
- Get Records API
- Post Data API
- Get Influencers API
- Get Categories API
- Get Calendars API
- Put Calendar API
- Delete Calendar API
- Migration APIs
- Rollup APIs
- Security APIs
- Watcher APIs
- Graph APIs
- Using Java Builders
- Migration Guide
- License
Update Job API
editUpdate Job API
editThe Update Job API provides the ability to update a machine learning job.
It accepts a UpdateJobRequest
object and responds
with a PutJobResponse
object.
Update Job Request
editAn UpdateJobRequest
object gets created with a JobUpdate
object.
Optional Arguments
editThe JobUpdate
object has many optional arguments with which to update an existing machine learning
job. An existing, non-null jobId
must be referenced in its creation.
JobUpdate update = new JobUpdate.Builder(jobId) .setDescription("My description") .setAnalysisLimits(new AnalysisLimits(1000L, null)) .setBackgroundPersistInterval(TimeValue.timeValueHours(3)) .setCategorizationFilters(Arrays.asList("categorization-filter")) .setDetectorUpdates(Arrays.asList(detectorUpdate)) .setGroups(Arrays.asList("job-group-1")) .setResultsRetentionDays(10L) .setModelPlotConfig(new ModelPlotConfig(true, null)) .setModelSnapshotRetentionDays(7L) .setCustomSettings(customSettings) .setRenormalizationWindowDays(3L) .build();
Mandatory, non-null |
|
Updated description |
|
Updated analysis limits |
|
Updated background persistence interval |
|
Updated analysis config’s categorization filters |
|
Updated detectors through the |
|
Updated group membership |
|
Updated result retention |
|
Updated model plot configuration |
|
Updated model snapshot retention setting |
|
Updated custom settings |
|
Updated renormalization window |
Included with these options are specific optional JobUpdate.DetectorUpdate
updates.
Synchronous Execution
editWhen executing a UpdateJobRequest
in the following manner, the client waits
for the PutJobResponse
to be returned before continuing with code execution:
PutJobResponse updateJobResponse = client.machineLearning().updateJob(updateJobRequest, RequestOptions.DEFAULT);
Asynchronous Execution
editExecuting a UpdateJobRequest
can also be done in an asynchronous fashion so that
the client can return directly. Users need to specify how the response or
potential failures will be handled by passing the request and a listener to the
asynchronous update-job method:
The asynchronous method does not block and returns immediately. Once it is
completed the ActionListener
is called back using the onResponse
method
if the execution successfully completed or using the onFailure
method if
it failed.
A typical listener for update-job
looks like:
Update Job Response
editA PutJobResponse
contains the updated Job
object
On this page