- Elasticsearch Guide: other versions:
- Getting Started
- Setup
- Breaking changes
- Breaking changes in 2.3
- Breaking changes in 2.2
- Breaking changes in 2.1
- Breaking changes in 2.0
- Removed features
- Network changes
- Multiple
path.data
striping - Mapping changes
- CRUD and routing changes
- Query DSL changes
- Search changes
- Aggregation changes
- Parent/Child changes
- Scripting changes
- Index API changes
- Snapshot and Restore changes
- Plugin and packaging changes
- Setting changes
- Stats, info, and
cat
changes - Java API changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IPv4 Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Warmers
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- Optimize
- Upgrade
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Field datatypes
- Meta-Fields
- Mapping parameters
analyzer
boost
coerce
copy_to
doc_values
dynamic
enabled
fielddata
format
geohash
geohash_precision
geohash_prefix
ignore_above
ignore_malformed
include_in_all
index
index_options
lat_lon
fields
norms
null_value
position_increment_gap
precision_step
properties
search_analyzer
similarity
store
term_vector
- Dynamic Mapping
- Transform
- Analysis
- Analyzers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Compound Word Token Filter
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Character Filters
- Modules
- Index Modules
- Testing
- Glossary of terms
- Release Notes
- 2.3.5 Release Notes
- 2.3.4 Release Notes
- 2.3.3 Release Notes
- 2.3.2 Release Notes
- 2.3.1 Release Notes
- 2.3.0 Release Notes
- 2.2.2 Release Notes
- 2.2.1 Release Notes
- 2.2.0 Release Notes
- 2.1.2 Release Notes
- 2.1.1 Release Notes
- 2.1.0 Release Notes
- 2.0.2 Release Notes
- 2.0.1 Release Notes
- 2.0.0 Release Notes
- 2.0.0-rc1 Release Notes
- 2.0.0-beta2 Release Notes
- 2.0.0-beta1 Release Notes
WARNING: Version 2.3 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
The Search API
editThe Search API
editNow let’s start with some simple searches. There are two basic ways to run searches: one is by sending search parameters through the REST request URI and the other by sending them through the REST request body. The request body method allows you to be more expressive and also to define your searches in a more readable JSON format. We’ll try one example of the request URI method but for the remainder of this tutorial, we will exclusively be using the request body method.
The REST API for search is accessible from the _search
endpoint. This example returns all documents in the bank index:
curl 'localhost:9200/bank/_search?q=*&pretty'
Let’s first dissect the search call. We are searching (_search
endpoint) in the bank index, and the q=*
parameter instructs Elasticsearch to match all documents in the index. The pretty
parameter, again, just tells Elasticsearch to return pretty-printed JSON results.
And the response (partially shown):
curl 'localhost:9200/bank/_search?q=*&pretty' { "took" : 63, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "1", "_score" : 1.0, "_source" : {"account_number":1,"balance":39225,"firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880 Holmes Lane","employer":"Pyrami","email":"amberduke@pyrami.com","city":"Brogan","state":"IL"} }, { "_index" : "bank", "_type" : "account", "_id" : "6", "_score" : 1.0, "_source" : {"account_number":6,"balance":5686,"firstname":"Hattie","lastname":"Bond","age":36,"gender":"M","address":"671 Bristol Street","employer":"Netagy","email":"hattiebond@netagy.com","city":"Dante","state":"TN"} }, { "_index" : "bank", "_type" : "account",
As for the response, we see the following parts:
-
took
– time in milliseconds for Elasticsearch to execute the search -
timed_out
– tells us if the search timed out or not -
_shards
– tells us how many shards were searched, as well as a count of the successful/failed searched shards -
hits
– search results -
hits.total
– total number of documents matching our search criteria -
hits.hits
– actual array of search results (defaults to first 10 documents) -
_score
andmax_score
- ignore these fields for now
Here is the same exact search above using the alternative request body method:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} } }'
The difference here is that instead of passing q=*
in the URI, we POST a JSON-style query request body to the _search
API. We’ll discuss this JSON query in the next section.
And the response (partially shown):
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} } }' { "took" : 26, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "1", "_score" : 1.0, "_source" : {"account_number":1,"balance":39225,"firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880 Holmes Lane","employer":"Pyrami","email":"amberduke@pyrami.com","city":"Brogan","state":"IL"} }, { "_index" : "bank", "_type" : "account", "_id" : "6", "_score" : 1.0, "_source" : {"account_number":6,"balance":5686,"firstname":"Hattie","lastname":"Bond","age":36,"gender":"M","address":"671 Bristol Street","employer":"Netagy","email":"hattiebond@netagy.com","city":"Dante","state":"TN"} }, { "_index" : "bank", "_type" : "account", "_id" : "13",
It is important to understand that once you get your search results back, Elasticsearch is completely done with the request and does not maintain any kind of server-side resources or open cursors into your results. This is in stark contrast to many other platforms such as SQL wherein you may initially get a partial subset of your query results up-front and then you have to continuously go back to the server if you want to fetch (or page through) the rest of the results using some kind of stateful server-side cursor.