- Elasticsearch Guide: other versions:
- Getting Started
- Setup
- Breaking changes
- Breaking changes in 2.3
- Breaking changes in 2.2
- Breaking changes in 2.1
- Breaking changes in 2.0
- Removed features
- Network changes
- Multiple
path.data
striping - Mapping changes
- CRUD and routing changes
- Query DSL changes
- Search changes
- Aggregation changes
- Parent/Child changes
- Scripting changes
- Index API changes
- Snapshot and Restore changes
- Plugin and packaging changes
- Setting changes
- Stats, info, and
cat
changes - Java API changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IPv4 Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Warmers
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- Optimize
- Upgrade
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Field datatypes
- Meta-Fields
- Mapping parameters
analyzer
boost
coerce
copy_to
doc_values
dynamic
enabled
fielddata
format
geohash
geohash_precision
geohash_prefix
ignore_above
ignore_malformed
include_in_all
index
index_options
lat_lon
fields
norms
null_value
position_increment_gap
precision_step
properties
search_analyzer
similarity
store
term_vector
- Dynamic Mapping
- Transform
- Analysis
- Analyzers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Compound Word Token Filter
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Character Filters
- Modules
- Index Modules
- Testing
- Glossary of terms
- Release Notes
- 2.3.5 Release Notes
- 2.3.4 Release Notes
- 2.3.3 Release Notes
- 2.3.2 Release Notes
- 2.3.1 Release Notes
- 2.3.0 Release Notes
- 2.2.2 Release Notes
- 2.2.1 Release Notes
- 2.2.0 Release Notes
- 2.1.2 Release Notes
- 2.1.1 Release Notes
- 2.1.0 Release Notes
- 2.0.2 Release Notes
- 2.0.1 Release Notes
- 2.0.0 Release Notes
- 2.0.0-rc1 Release Notes
- 2.0.0-beta2 Release Notes
- 2.0.0-beta1 Release Notes
WARNING: Version 2.3 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Multi Match Query
editMulti Match Query
editThe multi_match
query builds on the match
query
to allow multi-field queries:
fields
and per-field boosting
editFields can be specified with wildcards, eg:
Individual fields can be boosted with the caret (^
) notation:
Types of multi_match
query:
editThe way the multi_match
query is executed internally depends on the type
parameter, which can be set to:
|
(default) Finds documents which match any field, but
uses the |
|
Finds documents which match any field and combines
the |
|
Treats fields with the same |
|
Runs a |
|
Runs a |
best_fields
editThe best_fields
type is most useful when you are searching for multiple
words best found in the same field. For instance “brown fox” in a single
field is more meaningful than “brown” in one field and “fox” in the other.
The best_fields
type generates a match
query for
each field and wraps them in a dis_max
query, to
find the single best matching field. For instance, this query:
{ "multi_match" : { "query": "brown fox", "type": "best_fields", "fields": [ "subject", "message" ], "tie_breaker": 0.3 } }
would be executed as:
{ "dis_max": { "queries": [ { "match": { "subject": "brown fox" }}, { "match": { "message": "brown fox" }} ], "tie_breaker": 0.3 } }
Normally the best_fields
type uses the score of the single best matching
field, but if tie_breaker
is specified, then it calculates the score as
follows:
- the score from the best matching field
-
plus
tie_breaker * _score
for all other matching fields
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
fuzziness
, prefix_length
, max_expansions
, rewrite
, zero_terms_query
and cutoff_frequency
, as explained in match query.
operator
and minimum_should_match
The best_fields
and most_fields
types are field-centric — they generate
a match
query per field. This means that the operator
and
minimum_should_match
parameters are applied to each field individually,
which is probably not what you want.
Take this query for example:
{ "multi_match" : { "query": "Will Smith", "type": "best_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } }
This query is executed as:
(+first_name:will +first_name:smith) | (+last_name:will +last_name:smith)
In other words, all terms must be present in a single field for a document to match.
See cross_fields
for a better solution.
most_fields
editThe most_fields
type is most useful when querying multiple fields that
contain the same text analyzed in different ways. For instance, the main
field may contain synonyms, stemming and terms without diacritics. A second
field may contain the original terms, and a third field might contain
shingles. By combining scores from all three fields we can match as many
documents as possible with the main field, but use the second and third fields
to push the most similar results to the top of the list.
This query:
{ "multi_match" : { "query": "quick brown fox", "type": "most_fields", "fields": [ "title", "title.original", "title.shingles" ] } }
would be executed as:
{ "bool": { "should": [ { "match": { "title": "quick brown fox" }}, { "match": { "title.original": "quick brown fox" }}, { "match": { "title.shingles": "quick brown fox" }} ] } }
The score from each match
clause is added together, then divided by the
number of match
clauses.
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
fuzziness
, prefix_length
, max_expansions
, rewrite
, zero_terms_query
and cutoff_frequency
, as explained in match query, but
see operator
and minimum_should_match
.
phrase
and phrase_prefix
editThe phrase
and phrase_prefix
types behave just like best_fields
,
but they use a match_phrase
or match_phrase_prefix
query instead of a
match
query.
This query:
{ "multi_match" : { "query": "quick brown f", "type": "phrase_prefix", "fields": [ "subject", "message" ] } }
would be executed as:
{ "dis_max": { "queries": [ { "match_phrase_prefix": { "subject": "quick brown f" }}, { "match_phrase_prefix": { "message": "quick brown f" }} ] } }
Also, accepts analyzer
, boost
, slop
and zero_terms_query
as explained
in Match Query. Type phrase_prefix
additionally accepts
max_expansions
.
cross_fields
editThe cross_fields
type is particularly useful with structured documents where
multiple fields should match. For instance, when querying the first_name
and last_name
fields for “Will Smith”, the best match is likely to have
“Will” in one field and “Smith” in the other.
One way of dealing with these types of queries is simply to index the
first_name
and last_name
fields into a single full_name
field. Of
course, this can only be done at index time.
The cross_field
type tries to solve these problems at query time by taking a
term-centric approach. It first analyzes the query string into individual
terms, then looks for each term in any of the fields, as though they were one
big field.
A query like:
{ "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "first_name", "last_name" ], "operator": "and" } }
is executed as:
+(first_name:will last_name:will) +(first_name:smith last_name:smith)
In other words, all terms must be present in at least one field for a
document to match. (Compare this to
the logic used for best_fields
and most_fields
.)
That solves one of the two problems. The problem of differing term frequencies is solved by blending the term frequencies for all fields in order to even out the differences.
In practice, first_name:smith
will be treated as though it has the same
frequencies as last_name:smith
, plus one. This will make matches on
first_name
and last_name
have comparable scores, with a tiny advantage
for last_name
since it is the most likely field that contains smith
.
Note that cross_fields
is usually only useful on short string fields
that all have a boost
of 1
. Otherwise boosts, term freqs and length
normalization contribute to the score in such a way that the blending of term
statistics is not meaningful anymore.
If you run the above query through the Validate API, it returns this explanation:
+blended("will", fields: [first_name, last_name]) +blended("smith", fields: [first_name, last_name])
Also, accepts analyzer
, boost
, operator
, minimum_should_match
,
zero_terms_query
and cutoff_frequency
, as explained in
match query.
cross_field
and analysis
editThe cross_field
type can only work in term-centric mode on fields that have
the same analyzer. Fields with the same analyzer are grouped together as in
the example above. If there are multiple groups, they are combined with a
bool
query.
For instance, if we have a first
and last
field which have
the same analyzer, plus a first.edge
and last.edge
which
both use an edge_ngram
analyzer, this query:
{ "multi_match" : { "query": "Jon", "type": "cross_fields", "fields": [ "first", "first.edge", "last", "last.edge" ] } }
would be executed as:
blended("jon", fields: [first, last]) | ( blended("j", fields: [first.edge, last.edge]) blended("jo", fields: [first.edge, last.edge]) blended("jon", fields: [first.edge, last.edge]) )
In other words, first
and last
would be grouped together and
treated as a single field, and first.edge
and last.edge
would be
grouped together and treated as a single field.
Having multiple groups is fine, but when combined with operator
or
minimum_should_match
, it can suffer from the same problem
as most_fields
or best_fields
.
You can easily rewrite this query yourself as two separate cross_fields
queries combined with a bool
query, and apply the minimum_should_match
parameter to just one of them:
{ "bool": { "should": [ { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "first", "last" ], "minimum_should_match": "50%" } }, { "multi_match" : { "query": "Will Smith", "type": "cross_fields", "fields": [ "*.edge" ] } } ] } }
You can force all fields into the same group by specifying the analyzer
parameter in the query.
{ "multi_match" : { "query": "Jon", "type": "cross_fields", "analyzer": "standard", "fields": [ "first", "last", "*.edge" ] } }
which will be executed as:
blended("will", fields: [first, first.edge, last.edge, last]) blended("smith", fields: [first, first.edge, last.edge, last])
tie_breaker
editBy default, each per-term blended
query will use the best score returned by
any field in a group, then these scores are added together to give the final
score. The tie_breaker
parameter can change the default behaviour of the
per-term blended
queries. It accepts:
|
Take the single best score out of (eg) |
|
Add together the scores for (eg) |
|
Take the single best score plus |
On this page