- Elasticsearch Guide: other versions:
- Getting Started
- Setup Elasticsearch
- Breaking changes
- Breaking changes in 5.4
- Breaking changes in 5.3
- Breaking changes in 5.2
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.4.3 Release Notes
- 5.4.2 Release Notes
- 5.4.1 Release Notes
- 5.4.0 Release Notes
- 5.3.3 Release Notes
- 5.3.2 Release Notes
- 5.3.1 Release Notes
- 5.3.0 Release Notes
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
- Painless API Reference
WARNING: Version 5.4 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Range Aggregation
editRange Aggregation
editA multi-bucket value source based aggregation that enables the user to define a set of ranges - each representing a bucket. During the aggregation process, the values extracted from each document will be checked against each bucket range and "bucket" the relevant/matching document.
Note that this aggregation includes the from
value and excludes the to
value for each range.
Example:
{ "aggs" : { "price_ranges" : { "range" : { "field" : "price", "ranges" : [ { "to" : 50 }, { "from" : 50, "to" : 100 }, { "from" : 100 } ] } } } }
Response:
{ ... "aggregations": { "price_ranges" : { "buckets": [ { "to": 50, "doc_count": 2 }, { "from": 50, "to": 100, "doc_count": 4 }, { "from": 100, "doc_count": 4 } ] } } }
Keyed Response
editSetting the keyed
flag to true
will associate a unique string key with each bucket and return the ranges as a hash rather than an array:
{ "aggs" : { "price_ranges" : { "range" : { "field" : "price", "keyed" : true, "ranges" : [ { "to" : 50 }, { "from" : 50, "to" : 100 }, { "from" : 100 } ] } } } }
Response:
{ ... "aggregations": { "price_ranges" : { "buckets": { "*-50.0": { "to": 50, "doc_count": 2 }, "50.0-100.0": { "from": 50, "to": 100, "doc_count": 4 }, "100.0-*": { "from": 100, "doc_count": 4 } } } } }
It is also possible to customize the key for each range:
{ "aggs" : { "price_ranges" : { "range" : { "field" : "price", "keyed" : true, "ranges" : [ { "key" : "cheap", "to" : 50 }, { "key" : "average", "from" : 50, "to" : 100 }, { "key" : "expensive", "from" : 100 } ] } } } }
Script
edit{ "aggs" : { "price_ranges" : { "range" : { "script" : { "lang": "painless", "inline": "doc['price'].value" }, "ranges" : [ { "to" : 50 }, { "from" : 50, "to" : 100 }, { "from" : 100 } ] } } } }
This will interpret the script
parameter as an inline
script with the painless
script language and no script parameters. To use a file script use the following syntax:
{ "aggs" : { "price_ranges" : { "range" : { "script" : { "file": "my_script", "params": { "field": "price" } }, "ranges" : [ { "to" : 50 }, { "from" : 50, "to" : 100 }, { "from" : 100 } ] } } } }
for indexed scripts replace the file
parameter with an id
parameter.
Value Script
editLets say the product prices are in USD but we would like to get the price ranges in EURO. We can use value script to convert the prices prior the aggregation (assuming conversion rate of 0.8)
{ "aggs" : { "price_ranges" : { "range" : { "field" : "price", "script" : { "lang": "painless", "inline": "_value * params.conversion_rate", "params" : { "conversion_rate" : 0.8 } }, "ranges" : [ { "to" : 35 }, { "from" : 35, "to" : 70 }, { "from" : 70 } ] } } } }
Sub Aggregations
editThe following example, not only "bucket" the documents to the different buckets but also computes statistics over the prices in each price range
{ "aggs" : { "price_ranges" : { "range" : { "field" : "price", "ranges" : [ { "to" : 50 }, { "from" : 50, "to" : 100 }, { "from" : 100 } ] }, "aggs" : { "price_stats" : { "stats" : { "field" : "price" } } } } } }
Response:
{ "aggregations": { "price_ranges" : { "buckets": [ { "to": 50, "doc_count": 2, "price_stats": { "count": 2, "min": 20, "max": 47, "avg": 33.5, "sum": 67 } }, { "from": 50, "to": 100, "doc_count": 4, "price_stats": { "count": 4, "min": 60, "max": 98, "avg": 82.5, "sum": 330 } }, { "from": 100, "doc_count": 4, "price_stats": { "count": 4, "min": 134, "max": 367, "avg": 216, "sum": 864 } } ] } } }
If a sub aggregation is also based on the same value source as the range aggregation (like the stats
aggregation in the example above) it is possible to leave out the value source definition for it. The following will return the same response as above:
On this page