- Elasticsearch Guide: other versions:
- Getting Started
- Setup Elasticsearch
- Breaking changes
- Breaking changes in 5.4
- Breaking changes in 5.3
- Breaking changes in 5.2
- Breaking changes in 5.1
- Breaking changes in 5.0
- Search and Query DSL changes
- Mapping changes
- Percolator changes
- Suggester changes
- Index APIs changes
- Document API changes
- Settings changes
- Allocation changes
- HTTP changes
- REST API changes
- CAT API changes
- Java API changes
- Packaging
- Plugin changes
- Filesystem related changes
- Path to data on disk
- Aggregation changes
- Script related changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Shadow replica indices
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- How To
- Testing
- Glossary of terms
- Release Notes
- 5.4.3 Release Notes
- 5.4.2 Release Notes
- 5.4.1 Release Notes
- 5.4.0 Release Notes
- 5.3.3 Release Notes
- 5.3.2 Release Notes
- 5.3.1 Release Notes
- 5.3.0 Release Notes
- 5.2.2 Release Notes
- 5.2.1 Release Notes
- 5.2.0 Release Notes
- 5.1.2 Release Notes
- 5.1.1 Release Notes
- 5.1.0 Release Notes
- 5.0.2 Release Notes
- 5.0.1 Release Notes
- 5.0.0 Combined Release Notes
- 5.0.0 GA Release Notes
- 5.0.0-rc1 Release Notes
- 5.0.0-beta1 Release Notes
- 5.0.0-alpha5 Release Notes
- 5.0.0-alpha4 Release Notes
- 5.0.0-alpha3 Release Notes
- 5.0.0-alpha2 Release Notes
- 5.0.0-alpha1 Release Notes
- 5.0.0-alpha1 Release Notes (Changes previously released in 2.x)
- Painless API Reference
WARNING: Version 5.4 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Text datatype
editText datatype
editA field to index full-text values, such as the body of an email or the
description of a product. These fields are analyzed
, that is they are passed through an
analyzer to convert the string into a list of individual terms
before being indexed. The analysis process allows Elasticsearch to search for
individual words within each full text field. Text fields are not
used for sorting and seldom used for aggregations (although the
significant terms aggregation
is a notable exception).
If you need to index structured content such as email addresses, hostnames, status
codes, or tags, it is likely that you should rather use a keyword
field.
Below is an example of a mapping for a text field:
PUT my_index { "mappings": { "my_type": { "properties": { "full_name": { "type": "text" } } } } }
Sometimes it is useful to have both a full text (text
) and a keyword
(keyword
) version of the same field: one for full text search and the
other for aggregations and sorting. This can be achieved with
multi-fields.
Parameters for text fields
editThe following parameters are accepted by text
fields:
The analyzer which should be used for
|
|
Mapping field-level query time boosting. Accepts a floating point number, defaults
to |
|
Should global ordinals be loaded eagerly on refresh? Accepts |
|
Can the field use in-memory fielddata for sorting, aggregations,
or scripting? Accepts |
|
Expert settings which allow to decide which values to load in memory when |
|
Multi-fields allow the same string value to be indexed in multiple ways for different purposes, such as one field for search and a multi-field for sorting and aggregations, or the same string value analyzed by different analyzers. |
|
Whether or not the field value should be included in the
|
|
Should the field be searchable? Accepts |
|
What information should be stored in the index, for search and highlighting purposes.
Defaults to |
|
Whether field-length should be taken into account when scoring queries.
Accepts |
|
The number of fake term position which should be inserted between each
element of an array of strings. Defaults to the |
|
Whether the field value should be stored and retrievable separately from
the |
|
The |
|
The |
|
Which scoring algorithm or similarity should be used. Defaults
to |
|
Whether term vectors should be stored for an |
Indexes imported from 2.x do not support text
. Instead they will
attempt to downgrade text
into string
. This allows you to merge modern
mappings with legacy mappings. Long lived indexes will have to be recreated
before upgrading to 6.x but mapping downgrade gives you the opportunity to do
the recreation on your own schedule.
On this page