- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Maximum size virtual memory check
- Max file size check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Stopping Elasticsearch
- Upgrade Elasticsearch
- Set up X-Pack
- Breaking changes
- Breaking changes in 6.0
- Aggregations changes
- Analysis changes
- Cat API changes
- Clients changes
- Cluster changes
- Document API changes
- Geo changes
- Indices changes
- Ingest changes
- Java API changes
- Mapping changes
- Packaging changes
- Percolator changes
- Plugins changes
- Reindex changes
- REST changes
- Scripting changes
- Search and Query DSL changes
- Settings changes
- Stats and info changes
- Breaking changes in 6.1
- Breaking changes in 6.2
- Breaking changes in 6.0
- X-Pack Breaking Changes
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- Monitoring Elasticsearch
- X-Pack APIs
- Info API
- Explore API
- Licensing APIs
- Migration APIs
- Machine Learning APIs
- Add Events to Calendar
- Add Jobs to Calendar
- Close Jobs
- Create Calendar
- Create Datafeeds
- Create Jobs
- Delete Calendar
- Delete Datafeeds
- Delete Events from Calendar
- Delete Jobs
- Delete Jobs from Calendar
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Calendars
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Scheduled Events
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Security APIs
- Watcher APIs
- Definitions
- X-Pack Commands
- How To
- Testing
- Glossary of terms
- Elasticsearch Release Notes
- Elasticsearch version 6.2.4
- Elasticsearch version 6.2.3
- Elasticsearch version 6.2.2
- Elasticsearch version 6.2.1
- Elasticsearch version 6.2.0
- Elasticsearch version 6.1.4
- Elasticsearch version 6.1.3
- Elasticsearch version 6.1.2
- Elasticsearch version 6.1.1
- Elasticsearch version 6.1.0
- Elasticsearch version 6.0.1
- Elasticsearch version 6.0.0
- Elasticsearch version 6.0.0-rc2
- Elasticsearch version 6.0.0-rc1
- Elasticsearch version 6.0.0-beta2
- Elasticsearch version 6.0.0-beta1
- Elasticsearch version 6.0.0-alpha2
- Elasticsearch version 6.0.0-alpha1
- Elasticsearch version 6.0.0-alpha1 (Changes previously released in 5.x)
- X-Pack Release Notes
- Elasticsearch X-Pack version 6.2.4
- Elasticsearch X-Pack version 6.2.3
- Elasticsearch X-Pack version 6.2.2
- Elasticsearch X-Pack version 6.2.1
- Elasticsearch X-Pack version 6.2.0
- Elasticsearch X-Pack version 6.1.4
- Elasticsearch X-Pack version 6.1.3
- Elasticsearch X-Pack version 6.1.2
- Elasticsearch X-Pack version 6.1.1
- Elasticsearch X-Pack version 6.1.0
- Elasticsearch X-Pack version 6.0.1
- Elasticsearch X-Pack version 6.0.0
- Elasticsearch X-Pack version 6.0.0-rc2
- Elasticsearch X-Pack version 6.0.0-rc1
- Elasticsearch X-Pack version 6.0.0-beta2
- Elasticsearch X-Pack version 6.0.0-beta1
- Elasticsearch X-Pack version 6.0.0-alpha2
- Elasticsearch X-Pack version 6.0.0-alpha1
WARNING: Version 6.2 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
Split Index
editSplit Index
editThe split index API allows you to split an existing index into a new index, where each original primary shard is split into two or more primary shards in the new index.
The _split
API requires the source index to be created with a
specific number_of_routing_shards
in order to be split in the future. This
requirement has been removed in Elasticsearch 7.0.
The number of times the index can be split (and the number of shards that each
original shard can be split into) is determined by the
index.number_of_routing_shards
setting. The number of routing shards
specifies the hashing space that is used internally to distribute documents
across shards with consistent hashing. For instance, a 5 shard index with
number_of_routing_shards
set to 30
(5 x 2 x 3
) could be split by a
factor of 2
or 3
. In other words, it could be split as follows:
-
5
→10
→30
(split by 2, then by 3) -
5
→15
→30
(split by 3, then by 2) -
5
→30
(split by 6)
Splitting works as follows:
- First, it creates a new target index with the same definition as the source index, but with a larger number of primary shards.
- Then it hard-links segments from the source index into the target index. (If the file system doesn’t support hard-linking, then all segments are copied into the new index, which is a much more time consuming process.)
-
Once the low level files are created all documents will be
hashed
again to delete documents that belong to a different shard. - Finally, it recovers the target index as though it were a closed index which had just been re-opened.
Preparing an index for splitting
editCreate an index with a routing shards factor:
PUT my_source_index { "settings": { "index.number_of_shards" : 1, "index.number_of_routing_shards" : 2 } }
Allows to split the index into two shards or in other words, it allows for a single split operation. |
In order to split an index, the index must be marked as read-only,
and have health green
.
This can be achieved with the following request:
Prevents write operations to this index while still allowing metadata changes like deleting the index. |
Splitting an index
editTo split my_source_index
into a new index called my_target_index
, issue
the following request:
POST my_source_index/_split/my_target_index { "settings": { "index.number_of_shards": 2 } }
The above request returns immediately once the target index has been added to the cluster state — it doesn’t wait for the split operation to start.
Indices can only be split if they satisfy the following requirements:
- the target index must not exist
- The index must have less primary shards than the target index.
- The number of primary shards in the target index must be a factor of the number of primary shards in the source index.
- The node handling the split process must have sufficient free disk space to accommodate a second copy of the existing index.
The _split
API is similar to the create index
API
and accepts settings
and aliases
parameters for the target index:
POST my_source_index/_split/my_target_index { "settings": { "index.number_of_shards": 5 }, "aliases": { "my_search_indices": {} } }
The number of shards in the target index. This must be a factor of the number of shards in the source index. |
Mappings may not be specified in the _split
request, and all
index.analysis.*
and index.similarity.*
settings will be overwritten with
the settings from the source index.
Monitoring the split process
editThe split process can be monitored with the _cat recovery
API, or the cluster health
API can be used to wait
until all primary shards have been allocated by setting the wait_for_status
parameter to yellow
.
The _split
API returns as soon as the target index has been added to the
cluster state, before any shards have been allocated. At this point, all
shards are in the state unassigned
. If, for any reason, the target index
can’t be allocated, its primary shard will remain unassigned
until it
can be allocated on that node.
Once the primary shard is allocated, it moves to state initializing
, and the
split process begins. When the split operation completes, the shard will
become active
. At that point, Elasticsearch will try to allocate any
replicas and may decide to relocate the primary shard to another node.
Wait For Active Shards
editBecause the split operation creates a new index to split the shards to, the wait for active shards setting on index creation applies to the split index action as well.
On this page