- Elasticsearch Guide: other versions:
- Getting Started
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Installing X-Pack
- Set up X-Pack
- Configuring X-Pack Java Clients
- X-Pack Settings
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- API Conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Character Filters
- Modules
- Index Modules
- Ingest Node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Fail Processor
- Foreach Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- Dot Expander Processor
- URL Decode Processor
- SQL Access
- Monitor a cluster
- Rolling up historical data
- Secure a cluster
- Overview
- Configuring security
- Encrypting communications in Elasticsearch
- Encrypting communications in an Elasticsearch Docker container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Security settings
- Auditing settings
- Getting started with security
- How security works
- User authentication
- Configuring SAML single-sign-on on the Elastic Stack
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, tribe, clients, and integrations
- Reference
- Troubleshooting
- Can’t log in after upgrading to 6.3.2
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on Cluster and Index Events
- X-Pack APIs
- Info API
- Explore API
- Licensing APIs
- Migration APIs
- Machine Learning APIs
- Add Events to Calendar
- Add Jobs to Calendar
- Close Jobs
- Create Calendar
- Create Datafeeds
- Create Jobs
- Delete Calendar
- Delete Datafeeds
- Delete Events from Calendar
- Delete Jobs
- Delete Jobs from Calendar
- Delete Model Snapshots
- Flush Jobs
- Forecast Jobs
- Get Calendars
- Get Buckets
- Get Overall Buckets
- Get Categories
- Get Datafeeds
- Get Datafeed Statistics
- Get Influencers
- Get Jobs
- Get Job Statistics
- Get Model Snapshots
- Get Scheduled Events
- Get Records
- Open Jobs
- Post Data to Jobs
- Preview Datafeeds
- Revert Model Snapshots
- Start Datafeeds
- Stop Datafeeds
- Update Datafeeds
- Update Jobs
- Update Model Snapshots
- Rollup APIs
- Security APIs
- Authenticate API
- Change passwords API
- Clear Cache API
- Create or update role mappings API
- Clear roles cache API
- Create or update roles API
- Create or update users API
- Delete role mappings API
- Delete roles API
- Delete users API
- Disable users API
- Enable users API
- Get role mappings API
- Get roles API
- Get token API
- Get users API
- Privilege APIs
- Invalidate token API
- SSL Certificate API
- Watcher APIs
- Definitions
- Command line tools
- How To
- Testing
- Glossary of terms
- Release Highlights
- Breaking changes
- Release Notes
- Elasticsearch version 6.3.2
- Elasticsearch version 6.3.1
- Elasticsearch version 6.3.0
- Elasticsearch version 6.2.4
- Elasticsearch version 6.2.3
- Elasticsearch version 6.2.2
- Elasticsearch version 6.2.1
- Elasticsearch version 6.2.0
- Elasticsearch version 6.1.4
- Elasticsearch version 6.1.3
- Elasticsearch version 6.1.2
- Elasticsearch version 6.1.1
- Elasticsearch version 6.1.0
- Elasticsearch version 6.0.1
- Elasticsearch version 6.0.0
- Elasticsearch version 6.0.0-rc2
- Elasticsearch version 6.0.0-rc1
- Elasticsearch version 6.0.0-beta2
- Elasticsearch version 6.0.0-beta1
- Elasticsearch version 6.0.0-alpha2
- Elasticsearch version 6.0.0-alpha1
- Elasticsearch version 6.0.0-alpha1 (Changes previously released in 5.x)
Doc counts and overlapping jobs
editDoc counts and overlapping jobs
editThere is an issue with doc counts, related to the above grouping limitation. Imagine you have two Rollup jobs saving to the same index, where one job is a "subset" of another job.
For example, you might have jobs with these two groupings:
PUT _xpack/rollup/job/sensor-all { "groups" : { "date_histogram": { "field": "timestamp", "interval": "1h", "delay": "7d" }, "terms": { "fields": ["node"] } }, "metrics": [ { "field": "price", "metrics": ["avg"] } ] ... }
and
PUT _xpack/rollup/job/sensor-building { "groups" : { "date_histogram": { "field": "timestamp", "interval": "1h", "delay": "7d" }, "terms": { "fields": ["node", "building"] } } ... }
The first job sensor-all
contains the groupings and metrics that apply to all data in the index. The second job is rolling up a subset
of data (in different buildings) which also include a building identifier. You did this because combining them would run into the limitation
described in the previous section.
This mostly works, but can sometimes return incorrect doc_counts
when you search. All metrics will be valid however.
The issue arises from the composite agg limitation described before, combined with search-time optimization. Imagine you try to run the following aggregation:
"aggs" : { "nodes": { "terms": { "field": "node" } } }
This aggregation could be serviced by either sensor-all
or sensor-building
job, since they both group on the node field. So the RollupSearch
API will search both of them and merge results. This will result in correct doc_counts and correct metrics. No problem here.
The issue arises from an aggregation that can only be serviced by sensor-building
, like this one:
"aggs" : { "nodes": { "terms": { "field": "node" }, "aggs": { "building": { "terms": { "field": "building" } } } } }
Now we run into a problem. The RollupSearch API will correctly identify that only sensor-building
job has all the required components
to answer the aggregation, and will search it exclusively. Unfortunately, due to the composite aggregation limitation, that job only
rolled up documents that have both a "node" and a "building" field. Meaning that the doc_counts for the "nodes"
aggregation will not
include counts for any document that doesn’t have [node, building]
fields.
-
The
doc_count
for"nodes"
aggregation will be incorrect because it only contains counts fornodes
that also have buildings -
The
doc_count
for"buildings"
aggregation will be correct - Any metrics, on any level, will be correct
Workarounds
editThere are two main workarounds if you find yourself with a schema like the above.
Easiest and most robust method: use separate indices to store your rollups. The limitations arise because you have several document schemas co-habitating in a single index, which makes it difficult for rollups to correctly summarize. If you make several rollup jobs and store them in separate indices, these sorts of difficulties do not arise. It does, however, keep you from searching across several different rollup indices at the same time.
The other workaround is to include an "off-target" aggregation in the query, which pulls in the "superset" job and corrects the doc counts.
The RollupSearch API determines the best job to search for each "leaf node" in the aggregation tree. So if we include a metric agg on price
,
which was only defined in the sensor-all
job, that will "pull in" the other job:
"aggs" : { "nodes": { "terms": { "field": "node" }, "aggs": { "building": { "terms": { "field": "building" } }, "avg_price": { "avg": { "field": "price" } } } } }
Because only sensor-all
job had an avg
on the price field, the RollupSearch API is forced to pull in that additional job for searching,
and will merge/correct the doc_counts as appropriate. This sort of workaround applies to any additional aggregation — metric or bucketing — although it can be tedious to look through the jobs and determine the right one to add.
Status
editWe realize this is an onerous limitation, and somewhat breaks the rollup contract of "pick the fields to rollup, we do the rest". We are
actively working to get the limitation to composite
agg fixed, and the related issues in Rollup. The documentation will be updated when
the fix is implemented.
On this page