- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- API conventions
- Document APIs
- Search APIs
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Shrink Index
- Split Index
- Rollover Index
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Indices Stats
- Indices Segments
- Indices Recovery
- Indices Shard Stores
- Clear Cache
- Flush
- Refresh
- Force Merge
- cat APIs
- Cluster APIs
- Query DSL
- Scripting
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Char Group Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Multiplexer Token Filter
- Conditional Token Filter
- Predicate Token Filter Script
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Parsing synonym files
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Exclude mode settings example
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- Minhash Token Filter
- Remove Duplicates Token Filter
- Character Filters
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Ingest APIs
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- Managing the index lifecycle
- Getting started with index lifecycle management
- Policy phases and actions
- Set up index lifecycle management policy
- Using policies to manage index rollover
- Update policy
- Index lifecycle error handling
- Restoring snapshots of managed indices
- Start and stop index lifecycle management
- Using ILM with existing indices
- SQL access
- Monitor a cluster
- Rolling up historical data
- Frozen indices
- Set up a cluster for high availability
- X-Pack APIs
- Info API
- Cross-cluster replication APIs
- Explore API
- Freeze index
- Index lifecycle management API
- Licensing APIs
- Migration APIs
- Machine learning APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create calendar
- Create datafeeds
- Create filter
- Create jobs
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get calendars
- Get buckets
- Get overall buckets
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Rollup APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- SSL certificate
- Unfreeze index
- Watcher APIs
- Definitions
- Secure a cluster
- Overview
- Configuring security
- Encrypting communications in Elasticsearch
- Encrypting communications in an Elasticsearch Docker Container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Configuring a Kerberos realm
- FIPS 140-2
- Security files
- How security works
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Testing
- Glossary of terms
- Release highlights
- Breaking changes
- Release notes
Script score query
editScript score query
editThis functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.
The script_score
allows you to modify the score of documents that are
retrieved by a query. This can be useful if, for example, a score
function is computationally expensive and it is sufficient to compute
the score on a filtered set of documents.
To use script_score
, you have to define a query and a script -
a function to be used to compute a new score for each document returned
by the query. For more information on scripting see
scripting documentation.
Here is an example of using script_score
to assign each matched document
a score equal to the number of likes divided by 10:
GET /_search { "query" : { "script_score" : { "query" : { "match": { "message": "elasticsearch" } }, "script" : { "source" : "doc['likes'].value / 10 " } } } }
Accessing the score of a document within a script
editWithin a script, you can
access
the _score
variable which represents the current relevance score of a
document.
Predefined functions within a Painless script
editYou can use any of the available painless functions in the painless script. Besides these functions, there are a number of predefined functions that can help you with scoring. We suggest you to use them instead of rewriting equivalent functions of your own, as these functions try to be the most efficient by using the internal mechanisms.
saturation
editsaturation(value,k) = value/(k + value)
"script" : { "source" : "saturation(doc['likes'].value, 1)" }
sigmoid
editsigmoid(value, k, a) = value^a/ (k^a + value^a)
"script" : { "source" : "sigmoid(doc['likes'].value, 2, 1)" }
Random functions
editThere are two predefined ways to produce random values:
randomNotReproducible
and randomReproducible
.
randomNotReproducible()
uses java.util.Random
class
to generate a random value of the type long
.
The generated values are not reproducible between requests' invocations.
"script" : { "source" : "randomNotReproducible()" }
randomReproducible(String seedValue, int seed)
produces
reproducible random values of type long
. This function requires
more computational time and memory than the non-reproducible version.
A good candidate for the seedValue
is document field values that
are unique across documents and already pre-calculated and preloaded
in the memory. For example, values of the document’s _seq_no
field
is a good candidate, as documents on the same shard have unique values
for the _seq_no
field.
"script" : { "source" : "randomReproducible(Long.toString(doc['_seq_no'].value), 100)" }
A drawback of using _seq_no
is that generated values change if
documents are updated. Another drawback is not absolute uniqueness, as
documents from different shards with the same sequence numbers
generate the same random values.
If you need random values to be distinct across different shards,
you can use a field with unique values across shards,
such as _id
, but watch out for the memory usage as all
these unique values need to be loaded into memory.
"script" : { "source" : "randomReproducible(doc['_id'].value, 100)" }
Decay functions for numeric fields
editYou can read more about decay functions here.
-
double decayNumericLinear(double origin, double scale, double offset, double decay, double docValue)
-
double decayNumericExp(double origin, double scale, double offset, double decay, double docValue)
-
double decayNumericGauss(double origin, double scale, double offset, double decay, double docValue)
Decay functions for geo fields
edit-
double decayGeoLinear(String originStr, String scaleStr, String offsetStr, double decay, GeoPoint docValue)
-
double decayGeoExp(String originStr, String scaleStr, String offsetStr, double decay, GeoPoint docValue)
-
double decayGeoGauss(String originStr, String scaleStr, String offsetStr, double decay, GeoPoint docValue)
"script" : { "source" : "decayGeoExp(params.origin, params.scale, params.offset, params.decay, doc['location'].value)", "params": { "origin": "40, -70.12", "scale": "200km", "offset": "0km", "decay" : 0.2 } }
Decay functions for date fields
edit-
double decayDateLinear(String originStr, String scaleStr, String offsetStr, double decay, JodaCompatibleZonedDateTime docValueDate)
-
double decayDateExp(String originStr, String scaleStr, String offsetStr, double decay, JodaCompatibleZonedDateTime docValueDate)
-
double decayDateGauss(String originStr, String scaleStr, String offsetStr, double decay, JodaCompatibleZonedDateTime docValueDate)
"script" : { "source" : "decayDateGauss(params.origin, params.scale, params.offset, params.decay, doc['date'].value)", "params": { "origin": "2008-01-01T01:00:00Z", "scale": "1h", "offset" : "0", "decay" : 0.5 } }
Decay functions on dates are limited to dates in the default format
and default time zone. Also calculations with now
are not supported.
Faster alternatives
editScript Score Query calculates the score for every hit (matching document). There are faster alternative query types that can efficiently skip non-competitive hits:
- If you want to boost documents on some static fields, use Rank Feature Query.
Transition from Function Score Query
editWe are deprecating Function Score, and Script Score Query will be a substitute for it.
Here we describe how Function Score Query’s functions can be equivalently implemented in Script Score Query:
script_score
editWhat you used in script_score
of the Function Score query, you
can copy into the Script Score query. No changes here.
weight
editweight
function can be implemented in the Script Score query through
the following script:
"script" : { "source" : "params.weight * _score", "params": { "weight": 2 } }
random_score
editUse randomReproducible
and randomNotReproducible
functions
as described in random functions.
field_value_factor
editfield_value_factor
function can be easily implemented through script:
"script" : { "source" : "Math.log10(doc['field'].value * params.factor)", params" : { "factor" : 5 } }
For checking if a document has a missing value, you can use
doc['field'].size() == 0
. For example, this script will use
a value 1
if a document doesn’t have a field field
:
"script" : { "source" : "Math.log10((doc['field'].size() == 0 ? 1 : doc['field'].value()) * params.factor)", params" : { "factor" : 5 } }
This table lists how field_value_factor
modifiers can be implemented
through a script:
Modifier | Implementation in Script Score |
---|---|
|
- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
decay functions
editScript Score query has equivalent decay functions that can be used in script.
On this page
- Accessing the score of a document within a script
- Predefined functions within a Painless script
- saturation
- sigmoid
- Random functions
- Decay functions for numeric fields
- Decay functions for geo fields
- Decay functions for date fields
- Faster alternatives
- Transition from Function Score Query
script_score
weight
random_score
field_value_factor
decay functions