- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite Aggregation
- Date Histogram Aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Query DSL
- Search across clusters
- Scripting
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Standard Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- Whitespace Tokenizer
- UAX URL Email Tokenizer
- Classic Tokenizer
- Thai Tokenizer
- NGram Tokenizer
- Edge NGram Tokenizer
- Keyword Tokenizer
- Pattern Tokenizer
- Char Group Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Token Filters
- ASCII Folding Token Filter
- Flatten Graph Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Multiplexer Token Filter
- Conditional Token Filter
- Predicate Token Filter Script
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Parsing synonym files
- Synonym Graph Token Filter
- Compound Word Token Filters
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Exclude mode settings example
- Classic Token Filter
- Apostrophe Token Filter
- Decimal Digit Token Filter
- Fingerprint Token Filter
- MinHash Token Filter
- Remove Duplicates Token Filter
- Character Filters
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- Managing the index lifecycle
- Getting started with index lifecycle management
- Policy phases and actions
- Set up index lifecycle management policy
- Using policies to manage index rollover
- Update policy
- Index lifecycle error handling
- Restoring snapshots of managed indices
- Start and stop index lifecycle management
- Using ILM with existing indices
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Secure a cluster
- Overview
- Configuring security
- Encrypting communications in Elasticsearch
- Encrypting communications in an Elasticsearch Docker Container
- Enabling cipher suites for stronger encryption
- Separating node-to-node and client traffic
- Configuring an Active Directory realm
- Configuring a file realm
- Configuring an LDAP realm
- Configuring a native realm
- Configuring a PKI realm
- Configuring a SAML realm
- Configuring a Kerberos realm
- Security files
- FIPS 140-2
- How security works
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Auditing security events
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Testing
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- Cluster APIs
- Cross-cluster replication APIs
- Document APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SSL certificate
- Transform APIs
- Watcher APIs
- Definitions
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Transform limitations
editTransform limitations
editThis functionality is in beta and is subject to change. The design and code is less mature than official GA features and is being provided as-is with no warranties. Beta features are not subject to the support SLA of official GA features.
The following limitations and known problems apply to the 7.3.2 release of the Elastic transform feature:
Beta transforms do not have guaranteed backwards or forwards compatibility
editWhilst transforms are beta, it is not guaranteed that a transform created in a previous version of the Elastic Stack will be able to start and operate in a future version. Neither can support be provided for transform tasks to be able to operate in a cluster with mixed node versions. Please note that the output of a transform is persisted to a destination index. This is a normal Elasticsearch index and is not affected by the beta status.
Transforms UI will not work during a rolling upgrade from 7.2 to 7.3
editIf your cluster contains mixed version nodes, for example during a rolling upgrade from 7.2 to 7.3, and transforms have been created in 7.2, the transforms UI (earler data frame UI) will not work. Please wait until all nodes have been upgraded to 7.3 before using the transforms UI.
Data frame data type limitation
editData frames do not (yet) support fields containing arrays – in the UI or the API. If you try to create one, the UI will fail to show the source index table.
Cross-cluster search is not supported
editCross-cluster search is not supported in 7.3 for transforms.
Up to 1,000 transforms are supported
editA single cluster will support up to 1,000 transforms. When using the
GET transforms API a total count
of transforms
is returned. Use the size
and from
parameters to enumerate through the full
list.
Aggregation responses may be incompatible with destination index mappings
editWhen a transform is first started, it will deduce the mappings
required for the destination index. This process is based on the field types of
the source index and the aggregations used. If the fields are derived from
scripted_metrics
or bucket_scripts
,
dynamic mappings will be used. In some instances the
deduced mappings may be incompatible with the actual data. For example, numeric
overflows might occur or dynamically mapped fields might contain both numbers
and strings. Please check Elasticsearch logs if you think this may have occurred. As a
workaround, you may define custom mappings prior to starting the
transform. For example,
create a custom destination index or
define an index template.
Batch transforms may not account for changed documents
editA batch transform uses a composite aggregation which allows efficient pagination through all buckets. Composite aggregations do not yet support a search context, therefore if the source data is changed (deleted, updated, added) while the batch data frame is in progress, then the results may not include these changes.
Continuous transform consistency does not account for deleted or updated documents
editWhile the process for transforms allows the continual recalculation of the transform as new data is being ingested, it does also have some limitations.
Changed entities will only be identified if their time field has also been updated and falls within the range of the action to check for changes. This has been designed in principle for, and is suited to, the use case where new data is given a timestamp for the time of ingest.
If the indices that fall within the scope of the source index pattern are removed, for example when deleting historical time-based indices, then the composite aggregation performed in consecutive checkpoint processing will search over different source data, and entities that only existed in the deleted index will not be removed from the data frame destination index.
Depending on your use case, you may wish to recreate the transform entirely after deletions. Alternatively, if your use case is tolerant to historical archiving, you may wish to include a max ingest timestamp in your aggregation. This will allow you to exclude results that have not been recently updated when viewing the destination index.
Deleting a transform does not delete the destination index or Kibana index pattern
editWhen deleting a transform using DELETE _data_frame/transforms/index
neither the data frame destination index nor the Kibana index pattern, should
one have been created, are deleted. These objects must be deleted separately.
Handling dynamic adjustment of aggregation page size
editDuring the development of transforms, control was favoured over performance. In the design considerations, it is preferred for the transform to take longer to complete quietly in the background rather than to finish quickly and take precedence in resource consumption.
Composite aggregations are well suited for high cardinality data enabling pagination through results. If a circuit breaker memory exception occurs when performing the composite aggregated search then we try again reducing the number of buckets requested. This circuit breaker is calculated based upon all activity within the cluster, not just activity from transforms, so it therefore may only be a temporary resource availability issue.
For a batch transform, the number of buckets requested is only ever adjusted downwards. The lowering of value may result in a longer duration for the transform checkpoint to complete. For continuous transforms, the number of buckets requested is reset back to its default at the start of every checkpoint and it is possible for circuit breaker exceptions to occur repeatedly in the Elasticsearch logs.
The transform retrieves data in batches which means it calculates
several buckets at once. Per default this is 500 buckets per search/index
operation. The default can be changed using max_page_search_size
and the
minimum value is 10. If failures still occur once the number of buckets
requested has been reduced to its minimum, then the transform will
be set to a failed state.
Handling dynamic adjustments for many terms
editFor each checkpoint, entities are identified that have changed since the last time the check was performed. This list of changed entities is supplied as a terms query to the transform composite aggregation, one page at a time. Then updates are applied to the destination index for each page of entities.
The page size
is defined by max_page_search_size
which is also used to
define the number of buckets returned by the composite aggregation search. The
default value is 500, the minimum is 10.
The index setting
index.max_terms_count
defines
the maximum number of terms that can be used in a terms query. The default value
is 65536. If max_page_search_size
exceeds index.max_terms_count
the
transform will fail.
Using smaller values for max_page_search_size
may result in a longer duration
for the transform checkpoint to complete.
Cannot update a transform
editTransform configurations cannot be updated. Please delete and then create a new transform instead.
Continuous transform scheduling limitations
editA continuous transform periodically checks for changes to source data. The functionality
of the scheduler is currently limited to a basic periodic timer which can be
within the frequency
range from 1s to 1h. The default is 1m. This is designed
to run little and often. When choosing a frequency
for this timer consider
your ingest rate along with the impact that the transform search/index
operations has other users in your cluster. Also note that retries occur at
frequency
interval.
Handling of failed transforms
editFailed transforms remain as a persistent task and should be handled appropriately, either by deleting it or by resolving the root cause of the failure and re-starting.
When using the API to delete a failed transform, first stop it using
_stop?force=true
, then delete it.
Continuous transforms may give incorrect results if documents are not yet available to search
editAfter a document is indexed, there is a very small delay until it is available to search.
A continuous transform periodically checks for changed entities between the time since
it last checked and now
minus sync.time.delay
. This time window moves
without overlapping. If the timestamp of a recently indexed document falls
within this time window but this document is not yet available to search then
this entity will not be updated.
If using a sync.time.field
that represents the data ingest time and using a
zero second or very small sync.time.delay
, then it is more likely that this
issue will occur.
On this page
- Beta transforms do not have guaranteed backwards or forwards compatibility
- Transforms UI will not work during a rolling upgrade from 7.2 to 7.3
- Data frame data type limitation
- Cross-cluster search is not supported
- Up to 1,000 transforms are supported
- Aggregation responses may be incompatible with destination index mappings
- Batch transforms may not account for changed documents
- Continuous transform consistency does not account for deleted or updated documents
- Deleting a transform does not delete the destination index or Kibana index pattern
- Handling dynamic adjustment of aggregation page size
- Handling dynamic adjustments for many terms
- Cannot update a transform
- Continuous transform scheduling limitations
- Handling of failed transforms
- Continuous transforms may give incorrect results if documents are not yet available to search