- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Logging configuration
- Auditing settings
- Cross-cluster replication settings
- Transforms settings
- Index lifecycle management settings
- License settings
- Machine learning settings
- Monitoring settings
- Security settings
- Snapshot lifecycle management settings
- SQL access settings
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Full-cluster restart and rolling restart
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Cumulative Cardinality Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Query DSL
- Search across clusters
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- Cluster APIs
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Cluster reroute API
editCluster reroute API
editChanges the allocation of shards in a cluster.
Request
editPOST /_cluster/reroute
Description
editThe reroute command allows for manual changes to the allocation of individual shards in the cluster. For example, a shard can be moved from one node to another explicitly, an allocation can be cancelled, and an unassigned shard can be explicitly allocated to a specific node.
It is important to note that after processing any reroute commands Elasticsearch will
perform rebalancing as normal (respecting the values of settings such as
cluster.routing.rebalance.enable
) in order to remain in a balanced state. For
example, if the requested allocation includes moving a shard from node1
to
node2
then this may cause a shard to be moved from node2
back to node1
to
even things out.
The cluster can be set to disable allocations using the
cluster.routing.allocation.enable
setting. If allocations are disabled then
the only allocations that will be performed are explicit ones given using the
reroute
command, and consequent allocations due to rebalancing.
It is possible to run reroute
commands in "dry run" mode by using the
?dry_run
URI query parameter, or by passing "dry_run": true
in the request
body. This will calculate the result of applying the commands to the current
cluster state, and return the resulting cluster state after the commands (and
re-balancing) has been applied, but will not actually perform the requested
changes.
If the ?explain
URI query parameter is included then a detailed explanation
of why the commands could or could not be executed is included in the response.
The cluster will attempt to allocate a shard a maximum of
index.allocation.max_retries
times in a row (defaults to 5
), before giving
up and leaving the shard unallocated. This scenario can be caused by
structural problems such as having an analyzer which refers to a stopwords
file which doesn’t exist on all nodes.
Once the problem has been corrected, allocation can be manually retried by
calling the reroute
API with the ?retry_failed
URI
query parameter, which will attempt a single retry round for these shards.
Query parameters
edit-
dry_run
-
(Optional, boolean) If
true
, then the request simulates the operation only and returns the resulting state. -
explain
-
(Optional, boolean) If
true
, then the response contains an explanation of why the commands can or cannot be executed. -
metric
-
(Optional, string) Limits the information returned to the specified metrics. Defaults to all but metadata The following options are available:
-
_all
- Shows all metrics.
-
blocks
-
Shows the
blocks
part of the response. -
master_node
-
Shows the elected
master_node
part of the response. -
metadata
-
Shows the
metadata
part of the response. If you supply a comma separated list of indices, the returned output will only contain metadata for these indices. -
nodes
-
Shows the
nodes
part of the response. -
routing_table
-
Shows the
routing_table
part of the response. -
version
- Shows the cluster state version.
-
-
retry_failed
-
(Optional, boolean) If
true
, then retries allocation of shards that are blocked due to too many subsequent allocation failures. -
master_timeout
-
(Optional, time units) Specifies the period of time to wait for
a connection to the master node. If no response is received before the timeout
expires, the request fails and returns an error. Defaults to
30s
. -
timeout
-
(Optional, time units) Specifies the period of time to wait for
a response. If no response is received before the timeout expires, the request
fails and returns an error. Defaults to
30s
.
Request body
edit-
commands
-
(Required, object) Defines the commands to perform. Supported commands are:
-
move
-
Move a started shard from one node to another node. Accepts
index
andshard
for index name and shard number,from_node
for the node to move the shard from, andto_node
for the node to move the shard to. -
cancel
-
Cancel allocation of a shard (or recovery). Accepts
index
andshard
for index name and shard number, andnode
for the node to cancel the shard allocation on. This can be used to force resynchronization of existing replicas from the primary shard by cancelling them and allowing them to be reinitialized through the standard recovery process. By default only replica shard allocations can be cancelled. If it is necessary to cancel the allocation of a primary shard then theallow_primary
flag must also be included in the request. -
allocate_replica
-
Allocate an unassigned replica shard to a node. Accepts
index
andshard
for index name and shard number, andnode
to allocate the shard to. Takes allocation deciders into account.
-
Two more commands are available that allow the allocation of a primary shard to a node. These commands should however be used with extreme care, as primary shard allocation is usually fully automatically handled by Elasticsearch. Reasons why a primary shard cannot be automatically allocated include the following:
- A new index was created but there is no node which satisfies the allocation deciders.
- An up-to-date shard copy of the data cannot be found on the current data nodes in the cluster. To prevent data loss, the system does not automatically promote a stale shard copy to primary.
The following two commands are dangerous and may result in data loss. They are
meant to be used in cases where the original data can not be recovered and the
cluster administrator accepts the loss. If you have suffered a temporary issue
that can be fixed, please see the retry_failed
flag described above. To
emphasise: if these commands are performed and then a node joins the cluster
that holds a copy of the affected shard then the copy on the newly-joined node
will be deleted or overwritten.
-
allocate_stale_primary
-
Allocate a primary shard to a node that holds a stale copy. Accepts the
index
andshard
for index name and shard number, andnode
to allocate the shard to. Using this command may lead to data loss for the provided shard id. If a node which has the good copy of the data rejoins the cluster later on, that data will be deleted or overwritten with the data of the stale copy that was forcefully allocated with this command. To ensure that these implications are well-understood, this command requires the flagaccept_data_loss
to be explicitly set totrue
. -
allocate_empty_primary
-
Allocate an empty primary shard to a node. Accepts the
index
andshard
for index name and shard number, andnode
to allocate the shard to. Using this command leads to a complete loss of all data that was indexed into this shard, if it was previously started. If a node which has a copy of the data rejoins the cluster later on, that data will be deleted. To ensure that these implications are well-understood, this command requires the flagaccept_data_loss
to be explicitly set totrue
.
Examples
editThis is a short example of a simple reroute API call:
POST /_cluster/reroute { "commands" : [ { "move" : { "index" : "test", "shard" : 0, "from_node" : "node1", "to_node" : "node2" } }, { "allocate_replica" : { "index" : "test", "shard" : 1, "node" : "node3" } } ] }