- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Logging configuration
- Auditing settings
- Cross-cluster replication settings
- Transforms settings
- Index lifecycle management settings
- License settings
- Machine learning settings
- Monitoring settings
- Security settings
- Snapshot lifecycle management settings
- SQL access settings
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Full-cluster restart and rolling restart
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Cumulative Cardinality Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Query DSL
- Search across clusters
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- Cluster APIs
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Top Hits Aggregation
editTop Hits Aggregation
editA top_hits
metric aggregator keeps track of the most relevant document being aggregated. This aggregator is intended
to be used as a sub aggregator, so that the top matching documents can be aggregated per bucket.
The top_hits
aggregator can effectively be used to group result sets by certain fields via a bucket aggregator.
One or more bucket aggregators determines by which properties a result set get sliced into.
Options
edit-
from
- The offset from the first result you want to fetch. -
size
- The maximum number of top matching hits to return per bucket. By default the top three matching hits are returned. -
sort
- How the top matching hits should be sorted. By default the hits are sorted by the score of the main query.
Supported per hit features
editThe top_hits aggregation returns regular search hits, because of this many per hit features can be supported:
Example
editIn the following example we group the sales by type and per type we show the last sale. For each sale only the date and price fields are being included in the source.
POST /sales/_search?size=0 { "aggs": { "top_tags": { "terms": { "field": "type", "size": 3 }, "aggs": { "top_sales_hits": { "top_hits": { "sort": [ { "date": { "order": "desc" } } ], "_source": { "includes": [ "date", "price" ] }, "size" : 1 } } } } } }
Possible response:
{ ... "aggregations": { "top_tags": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "hat", "doc_count": 3, "top_sales_hits": { "hits": { "total" : { "value": 3, "relation": "eq" }, "max_score": null, "hits": [ { "_index": "sales", "_type": "_doc", "_id": "AVnNBmauCQpcRyxw6ChK", "_source": { "date": "2015/03/01 00:00:00", "price": 200 }, "sort": [ 1425168000000 ], "_score": null } ] } } }, { "key": "t-shirt", "doc_count": 3, "top_sales_hits": { "hits": { "total" : { "value": 3, "relation": "eq" }, "max_score": null, "hits": [ { "_index": "sales", "_type": "_doc", "_id": "AVnNBmauCQpcRyxw6ChL", "_source": { "date": "2015/03/01 00:00:00", "price": 175 }, "sort": [ 1425168000000 ], "_score": null } ] } } }, { "key": "bag", "doc_count": 1, "top_sales_hits": { "hits": { "total" : { "value": 1, "relation": "eq" }, "max_score": null, "hits": [ { "_index": "sales", "_type": "_doc", "_id": "AVnNBmatCQpcRyxw6ChH", "_source": { "date": "2015/01/01 00:00:00", "price": 150 }, "sort": [ 1420070400000 ], "_score": null } ] } } } ] } } }
Field collapse example
editField collapsing or result grouping is a feature that logically groups a result set into groups and per group returns
top documents. The ordering of the groups is determined by the relevancy of the first document in a group. In
Elasticsearch this can be implemented via a bucket aggregator that wraps a top_hits
aggregator as sub-aggregator.
In the example below we search across crawled webpages. For each webpage we store the body and the domain the webpage
belong to. By defining a terms
aggregator on the domain
field we group the result set of webpages by domain. The
top_hits
aggregator is then defined as sub-aggregator, so that the top matching hits are collected per bucket.
Also a max
aggregator is defined which is used by the terms
aggregator’s order feature to return the buckets by
relevancy order of the most relevant document in a bucket.
POST /sales/_search { "query": { "match": { "body": "elections" } }, "aggs": { "top_sites": { "terms": { "field": "domain", "order": { "top_hit": "desc" } }, "aggs": { "top_tags_hits": { "top_hits": {} }, "top_hit" : { "max": { "script": { "source": "_score" } } } } } } }
At the moment the max
(or min
) aggregator is needed to make sure the buckets from the terms
aggregator are
ordered according to the score of the most relevant webpage per domain. Unfortunately the top_hits
aggregator
can’t be used in the order
option of the terms
aggregator yet.
top_hits support in a nested or reverse_nested aggregator
editIf the top_hits
aggregator is wrapped in a nested
or reverse_nested
aggregator then nested hits are being returned.
Nested hits are in a sense hidden mini documents that are part of regular document where in the mapping a nested field type
has been configured. The top_hits
aggregator has the ability to un-hide these documents if it is wrapped in a nested
or reverse_nested
aggregator. Read more about nested in the nested type mapping.
If nested type has been configured a single document is actually indexed as multiple Lucene documents and they share
the same id. In order to determine the identity of a nested hit there is more needed than just the id, so that is why
nested hits also include their nested identity. The nested identity is kept under the _nested
field in the search hit
and includes the array field and the offset in the array field the nested hit belongs to. The offset is zero based.
Let’s see how it works with a real sample. Considering the following mapping:
PUT /sales { "mappings": { "properties" : { "tags" : { "type" : "keyword" }, "comments" : { "type" : "nested", "properties" : { "username" : { "type" : "keyword" }, "comment" : { "type" : "text" } } } } } }
And some documents:
PUT /sales/_doc/1?refresh { "tags": ["car", "auto"], "comments": [ {"username": "baddriver007", "comment": "This car could have better brakes"}, {"username": "dr_who", "comment": "Where's the autopilot? Can't find it"}, {"username": "ilovemotorbikes", "comment": "This car has two extra wheels"} ] }
It’s now possible to execute the following top_hits
aggregation (wrapped in a nested
aggregation):
POST /sales/_search { "query": { "term": { "tags": "car" } }, "aggs": { "by_sale": { "nested" : { "path" : "comments" }, "aggs": { "by_user": { "terms": { "field": "comments.username", "size": 1 }, "aggs": { "by_nested": { "top_hits":{} } } } } } } }
Top hits response snippet with a nested hit, which resides in the first slot of array field comments
:
{ ... "aggregations": { "by_sale": { "by_user": { "buckets": [ { "key": "baddriver007", "doc_count": 1, "by_nested": { "hits": { "total" : { "value": 1, "relation": "eq" }, "max_score": 0.3616575, "hits": [ { "_index": "sales", "_type" : "_doc", "_id": "1", "_nested": { "field": "comments", "offset": 0 }, "_score": 0.3616575, "_source": { "comment": "This car could have better brakes", "username": "baddriver007" } } ] } } } ... ] } } } }
Name of the array field containing the nested hit |
|
Position if the nested hit in the containing array |
|
Source of the nested hit |
If _source
is requested then just the part of the source of the nested object is returned, not the entire source of the document.
Also stored fields on the nested inner object level are accessible via top_hits
aggregator residing in a nested
or reverse_nested
aggregator.
Only nested hits will have a _nested
field in the hit, non nested (regular) hits will not have a _nested
field.
The information in _nested
can also be used to parse the original source somewhere else if _source
isn’t enabled.
If there are multiple levels of nested object types defined in mappings then the _nested
information can also be hierarchical
in order to express the identity of nested hits that are two layers deep or more.
In the example below a nested hit resides in the first slot of the field nested_grand_child_field
which then resides in
the second slow of the nested_child_field
field:
... "hits": { "total" : { "value": 2565, "relation": "eq" }, "max_score": 1, "hits": [ { "_index": "a", "_type": "b", "_id": "1", "_score": 1, "_nested" : { "field" : "nested_child_field", "offset" : 1, "_nested" : { "field" : "nested_grand_child_field", "offset" : 0 } } "_source": ... }, ... ] } ...
On this page