- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Logging configuration
- Auditing settings
- Cross-cluster replication settings
- Transforms settings
- Index lifecycle management settings
- License settings
- Machine learning settings
- Monitoring settings
- Security settings
- Snapshot lifecycle management settings
- SQL access settings
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Full-cluster restart and rolling restart
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Cumulative Cardinality Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Query DSL
- Search across clusters
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- Cluster APIs
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
PKI user authentication
editPKI user authentication
editYou can configure Elasticsearch to use Public Key Infrastructure (PKI) certificates to authenticate users. In this scenario, clients connecting directly to Elasticsearch must present X.509 certificates. First, the certificates must be accepted for authentication on the SSL/TLS layer on Elasticsearch. Then they are optionally further validated by a PKI realm. See PKI authentication for clients connecting directly to Elasticsearch.
You can also use PKI certificates to authenticate to Kibana, however this requires some additional configuration. On Elasticsearch, this configuration enables Kibana to act as a proxy for SSL/TLS authentication and to submit the client certificates to Elasticsearch for further validation by a PKI realm. See PKI authentication for clients connecting to Kibana.
PKI authentication for clients connecting directly to Elasticsearch
editTo use PKI in Elasticsearch, you configure a PKI realm, enable client authentication on the desired network layers (transport or http), and map the Distinguished Names (DNs) from the Subject field in the user certificates to roles. You create the mappings in a role mapping file or use the role mappings API.
You can use a combination of PKI and username/password authentication. For example, you can enable SSL/TLS on the transport layer and define a PKI realm to require transport clients to authenticate with X.509 certificates, while still authenticating HTTP traffic using username and password credentials.
-
Add a realm configuration for a
pki
realm toelasticsearch.yml
under thexpack.security.authc.realms.pki
namespace. If you are configuring multiple realms, you should explicitly set theorder
attribute. See PKI realm settings for all of the options you can set for apki
realm.For example, the following snippet shows the most basic
pki
realm configuration:xpack: security: authc: realms: pki: pki1: order: 1
With this configuration, any certificate trusted by the Elasticsearch SSL/TLS layer is accepted for authentication. The username is the common name (CN) extracted from the DN in the Subject field of the end-entity certificate. This configuration is not sufficient to permit PKI authentication to Kibana; additional steps are required.
When you configure realms in
elasticsearch.yml
, only the realms you specify are used for authentication. If you also want to use thenative
orfile
realms, you must include them in the realm chain. -
Optional: If you want to use something other than the CN of the Subject DN as the username, you can specify a regex to extract the desired username. The regex is applied on the Subject DN.
For example, the regex in the following configuration extracts the email address from the Subject DN:
xpack: security: authc: realms: pki: pki1: username_pattern: "EMAILADDRESS=(.*?)(?:,|$)"
If the regex is too restrictive and does not match the Subject DN of the client’s certificate, then the realm does not authenticate the certificate.
- Optional: If you want the same users to also be authenticated using certificates when they connect to Kibana, you must configure the Elasticsearch PKI realm to allow delegation. See PKI authentication for clients connecting to Kibana.
- Restart Elasticsearch because realm configuration is not reloaded automatically. If you’re following through with the next steps, you might wish to hold the restart for last.
- Enable SSL/TLS.
-
Enable client authentication on the desired network layers (transport or http).
To use PKI when clients connect directly to Elasticsearch, you must enable SSL/TLS with client authentication. That is to say, you must set
xpack.security.transport.ssl.client_authentication
andxpack.security.http.ssl.client_authentication
tooptional
orrequired
. If the setting value isoptional
, clients without certificates can authenticate with other credentials.When clients connect directly to Elasticsearch and are not proxy-authenticated, the PKI realm relies on the TLS settings of the node’s network interface. The realm can be configured to be more restrictive than the underlying network connection. That is, it is possible to configure the node such that some connections are accepted by the network interface but then fail to be authenticated by the PKI realm. However, the reverse is not possible. The PKI realm cannot authenticate a connection that has been refused by the network interface.
In particular this means:
-
The transport or http interface must request client certificates by setting
client_authentication
tooptional
orrequired
. -
The interface must trust the certificate that is presented by the client
by configuring either the
truststore
orcertificate_authorities
paths, or by settingverification_mode
tonone
. - The protocols supported by the interface must be compatible with those used by the client.
For an explanation of these settings, see General TLS settings.
The relevant network interface (transport or http) must be configured to trust any certificate that is to be used within the PKI realm. However, it is possible to configure the PKI realm to trust only a subset of the certificates accepted by the network interface. This is useful when the SSL/TLS layer trusts clients with certificates that are signed by a different CA than the one that signs your users' certificates.
To configure the PKI realm with its own truststore, specify the
truststore.path
option. The path must be located within the Elasticsearch configuration directory (ES_PATH_CONF
). For example:xpack: security: authc: realms: pki: pki1: truststore: path: "pki1_truststore.jks"
If the truststore is password protected, the password should be configured by adding the appropriate
secure_password
setting to the Elasticsearch keystore. For example, the following command adds the password for the example realm above:bin/elasticsearch-keystore add \ xpack.security.authc.realms.pki.pki1.truststore.secure_password
The
certificate_authorities
option can be used as an alternative to thetruststore.path
setting, when the certificate files are PEM formatted. The setting accepts a list. The two options are exclusive, they cannot be both used simultaneously. -
The transport or http interface must request client certificates by setting
-
Map roles for PKI users.
You map roles for PKI users through the role mapping APIs or by using a file stored on each node. Both configuration options are merged together. When a user authenticates against a PKI realm, the privileges for that user are the union of all privileges defined by the roles to which the user is mapped.
You identify a user by the distinguished name in their certificate. For example, the following mapping configuration maps
John Doe
to theuser
role using the role mapping API:PUT /_security/role_mapping/users { "roles" : [ "user" ], "rules" : { "field" : { "dn" : "cn=John Doe,ou=example,o=com" } }, "enabled": true }
Alternatively, use a role-mapping file. For example:
The file’s path defaults to
ES_PATH_CONF/role_mapping.yml
. You can specify a different path (which must be withinES_PATH_CONF
) by using thefiles.role_mapping
realm setting (e.g.xpack.security.authc.realms.pki.pki1.files.role_mapping
).The distinguished name for a PKI user follows X.500 naming conventions which place the most specific fields (like
cn
oruid
) at the beginning of the name and the most general fields (likeo
ordc
) at the end of the name. Some tools, such as openssl, may print out the subject name in a different format.One way that you can determine the correct DN for a certificate is to use the authenticate API (use the relevant PKI certificate as the means of authentication) and inspect the metadata field in the result. The user’s distinguished name will be populated under the
pki_dn
key. You can also use the authenticate API to validate your role mapping.For more information, see Mapping users and groups to roles.
The PKI realm supports authorization realms as an alternative to role mapping.
PKI authentication for clients connecting to Kibana
editBy default, the PKI realm relies on the node’s network interface to perform the SSL/TLS handshake and extract the client certificate. This behaviour requires that clients connect directly to Elasticsearch so that their SSL connection is terminated by the Elasticsearch node. If SSL/TLS authentication is to be performed by Kibana, the PKI realm must be configured to permit delegation.
Specifically, when clients presenting X.509 certificates connect to Kibana, Kibana performs the SSL/TLS authentication. Kibana then forwards the client’s certificate chain (by calling an Elasticsearch API) to have them further validated by the PKI realms that have been configured for delegation.
To permit authentication delegation for a specific Elasticsearch PKI realm, start by configuring the realm for the usual case, as detailed in the PKI authentication for clients connecting directly to Elasticsearch section. In this scenario, when you enable TLS, it is mandatory that you encrypt HTTP client communications.
You must also explicitly configure a truststore
(or, equivalently
certificate_authorities
) even though it is the same trust configuration that
you have configured on the network layer. The
xpack.security.authc.token.enabled
and delegation.enabled
settings must also
be true
. For example:
xpack: security: authc: token.enabled: true realms: pki: pki1: order: 1 delegation.enabled: true truststore: path: "pki1_truststore.jks"
After you restart Elasticsearch, this realm can validate delegated PKI authentication. You must then configure Kibana to allow PKI certificate authentication.
A PKI realm with delegation.enabled
still works unchanged for clients
connecting directly to Elasticsearch. Directly authenticated users and users that are PKI
authenticated by delegation to Kibana both follow the same
role mapping rules or
authorization realms configurations.
If you use the role mapping APIs, however, you
can distinguish between users that are authenticated by delegation and users
that are authenticated directly. The former have the extra fields
pki_delegated_by_user
and pki_delegated_by_realm
in the user’s metadata. In
the common setup, where authentication is delegated to Kibana, the values of
these fields are kibana
and reserved
, respectively. For example, the
following role mapping rule assigns the role_for_pki1_direct
role to all users
that have been authenticated directly by the pki1
realm, by connecting to Elasticsearch
instead of going through Kibana:
On this page